Ultrasound-stimulated peripheral nerve regeneration within asymmetrically porous PLGA/Pluronic F127 nerve guide conduit
- PMID: 20552617
- DOI: 10.1002/jbm.b.31659
Ultrasound-stimulated peripheral nerve regeneration within asymmetrically porous PLGA/Pluronic F127 nerve guide conduit
Abstract
Recently, we developed a novel method to fabricate a nerve guide conduit (NGC) with asymmetrical pore structure and hydrophilicity using poly(lactic-co-glycolic acid) (PLGA) and Pluronic F127 by a modified immersion precipitation method. From the animal study using a rat model (sciatic nerve defect of rat), we recognized that the unique PLGA/Pluronic F127 tube provided good environments for nerve regeneration. In this study, we applied low-intensity pulsed ultrasound as a simple and noninvasive stimulus at the PLGA/F127 NGC-implanted site transcutaneously in rats to investigate the feasibility of ultrasound for the enhanced nerve regeneration through the tube. The nerve regeneration behaviors within the ultrasound-stimulated PLGA/Pluronic F127 NGCs were compared with the NGCs without the ultrasound treatment as well as normal nerve by histological and immunohistochemical observations. It was observed that the PLGA/Pluronic F127 tube-implanted group applied with the ultrasound had more rapid nerve regeneration behavior (approximately 0.71 mm/day) than the tube-implanted group without the ultrasound treatment (approximately 0.48 mm/day). The ultrasound-treated tube group also showed greater neural tissue area as well as larger axon diameter and thicker myelin sheath than the tube group without the ultrasound treatment, indicating better nerve regeneration. The better nerve regeneration behavior in the our NGC/ultrasound system may be caused by the synergistic effect of the asymmetrically porous PLGA/Pluronic F127 tube with unique properties (selective permeability, hydrophilicity, and structural stability, which can provide good environment for nerve regeneration) and physical stimulus (stimulation of the Schwann cells and activation of the neurotrophic factors).
Similar articles
-
Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit.Biomaterials. 2008 Apr;29(11):1601-9. doi: 10.1016/j.biomaterials.2007.11.036. Epub 2007 Dec 21. Biomaterials. 2008. PMID: 18155135
-
Fabrication and characterization of hydrophilized porous PLGA nerve guide conduits by a modified immersion precipitation method.J Biomed Mater Res A. 2007 Mar 1;80(3):530-8. doi: 10.1002/jbm.a.30937. J Biomed Mater Res A. 2007. PMID: 17013859
-
Enhanced guided bone regeneration by asymmetrically porous PCL/pluronic F127 membrane and ultrasound stimulation.J Biomater Sci Polym Ed. 2012;23(13):1673-86. doi: 10.1163/092050611X589518. Epub 2012 May 11. J Biomater Sci Polym Ed. 2012. PMID: 21888761
-
The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration.Int J Mol Sci. 2023 Sep 15;24(18):14132. doi: 10.3390/ijms241814132. Int J Mol Sci. 2023. PMID: 37762437 Free PMC article. Review.
-
Optimal Morphometric Characteristics of a Tubular Polymeric Scaffold to Promote Peripheral Nerve Regeneration: A Scoping Review.Polymers (Basel). 2022 Jan 20;14(3):397. doi: 10.3390/polym14030397. Polymers (Basel). 2022. PMID: 35160387 Free PMC article.
Cited by
-
Functional regeneration of recurrent laryngeal nerve injury during thyroid surgery using an asymmetrically porous nerve guide conduit in an animal model.Thyroid. 2014 Jan;24(1):52-9. doi: 10.1089/thy.2013.0338. Epub 2013 Nov 6. Thyroid. 2014. PMID: 24015805 Free PMC article.
-
Challenges for nerve repair using chitosan-siloxane hybrid porous scaffolds.Biomed Res Int. 2014;2014:153808. doi: 10.1155/2014/153808. Epub 2014 Jun 17. Biomed Res Int. 2014. PMID: 25054129 Free PMC article. Review.
-
Exploiting Lipid and Polymer Nanocarriers to Improve the Anticancer Sonodynamic Activity of Chlorophyll.Pharmaceutics. 2020 Jun 30;12(7):605. doi: 10.3390/pharmaceutics12070605. Pharmaceutics. 2020. PMID: 32629767 Free PMC article.
-
Advancements in stimulation therapies for peripheral nerve regeneration.Biomed Mater. 2024 Aug 22;19(5):10.1088/1748-605X/ad651d. doi: 10.1088/1748-605X/ad651d. Biomed Mater. 2024. PMID: 39025114 Free PMC article. Review.
-
A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents.Polymers (Basel). 2016 Oct 18;8(10):359. doi: 10.3390/polym8100359. Polymers (Basel). 2016. PMID: 30974645 Free PMC article. Review.
References
REFERENCES
-
- Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gurlek A, Nabawi A, Lohman R, Patrick CW. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999; 20: 1109-1115.
-
- Schlosshauer B, Müller E, Schröder B, Planck H, Müller HW. Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain Res 2003; 963: 321-326.
-
- Pan YA, Misgeld T, Lichtman JW, Sanes JR. Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 2003; 23: 11479-11488.
-
- Clark RK. Anatomy and Physiology: Understanding the Human Body. Sundbury: Jones and Bartlett Publishers; 2005.
-
- Maquet V, Martin D, Malgrange B, Franzen R, Schoenen J, Moonen G, Jérôme R. Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J Biomed Mater Res 2000; 52: 639-651.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources