Communicating subcellular distributions
- PMID: 20552685
- PMCID: PMC2901539
- DOI: 10.1002/cyto.a.20933
Communicating subcellular distributions
Abstract
To build more accurate models of cells and tissues, the ability to incorporate information on the distributions of proteins (and other macromolecules) will become increasingly important. This review describes current progress towards determining and representing protein subcellular patterns so that the information can be used as part of systems biology efforts. Approaches to decomposing an image of the subcellular pattern of a protein give critical information about the fraction of that protein in each of a number of fundamental patterns (e.g., organelles). Methods for learning generative models from images provide a means of capturing the essential properties and variation in those properties of cell shape and organelle patterns. The combination of models of fundamental patterns and vectors specifying the fraction of a protein in each of them provide a much better means of communicating subcellular patterns than the descriptive terms that are currently used. Communicating information about subcellular patterns is important not only for systems biology simulations but also for representing results from microscopy experiments, including high content screening and imaging flow cytometry, in a transportable and generalizable manner.
Figures






Similar articles
-
CellOrganizer: Image-derived models of subcellular organization and protein distribution.Methods Cell Biol. 2012;110:179-93. doi: 10.1016/B978-0-12-388403-9.00007-2. Methods Cell Biol. 2012. PMID: 22482949 Free PMC article.
-
Automated learning of generative models for subcellular location: building blocks for systems biology.Cytometry A. 2007 Dec;71(12):978-90. doi: 10.1002/cyto.a.20487. Cytometry A. 2007. PMID: 17972315
-
CellOrganizer: Learning and Using Cell Geometries for Spatial Cell Simulations.Methods Mol Biol. 2019;1945:251-264. doi: 10.1007/978-1-4939-9102-0_11. Methods Mol Biol. 2019. PMID: 30945250 Free PMC article.
-
Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics.Cytometry A. 2006 Jul;69(7):631-40. doi: 10.1002/cyto.a.20280. Cytometry A. 2006. PMID: 16752421 Free PMC article. Review.
-
Quantitative analysis of organelle abundance, morphology and dynamics.Curr Opin Biotechnol. 2011 Feb;22(1):127-32. doi: 10.1016/j.copbio.2010.10.015. Epub 2010 Nov 22. Curr Opin Biotechnol. 2011. PMID: 21106361 Review.
Cited by
-
Protein (multi-)location prediction: utilizing interdependencies via a generative model.Bioinformatics. 2015 Jun 15;31(12):i365-74. doi: 10.1093/bioinformatics/btv264. Bioinformatics. 2015. PMID: 26072505 Free PMC article.
-
Stromal proteome expression profile and muscle-invasive bladder cancer research.Cancer Cell Int. 2012 Aug 25;12(1):39. doi: 10.1186/1475-2867-12-39. Cancer Cell Int. 2012. PMID: 22920603 Free PMC article.
-
Proteomics research on muscle-invasive bladder transitional cell carcinoma.Cancer Cell Int. 2011 Jun 7;11(1):17. doi: 10.1186/1475-2867-11-17. Cancer Cell Int. 2011. PMID: 21645413 Free PMC article.
-
RNAi screening: new approaches, understandings, and organisms.Wiley Interdiscip Rev RNA. 2012 Mar-Apr;3(2):145-58. doi: 10.1002/wrna.110. Epub 2011 Sep 22. Wiley Interdiscip Rev RNA. 2012. PMID: 21953743 Free PMC article. Review.
-
Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.Algorithms Mol Biol. 2014 Mar 19;9(1):8. doi: 10.1186/1748-7188-9-8. Algorithms Mol Biol. 2014. PMID: 24646119 Free PMC article.
References
-
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25(1):25–9. - PMC - PubMed
-
- Chou KC, Shen HB. Recent progress in protein subcellular location prediction. Anal Biochem. 2007;370(1):1–16. - PubMed
-
- Shatkay H, Hoglund A, Brady S, Blum T, Donnes P, Kohlbacher O. SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics. 2007;23(11):1410–7. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources