Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 1;316(16):2676-82.
doi: 10.1016/j.yexcr.2010.05.024. Epub 2010 May 27.

Toll-like receptor 9 ligands enhance mesenchymal stem cell invasion and expression of matrix metalloprotease-13

Affiliations

Toll-like receptor 9 ligands enhance mesenchymal stem cell invasion and expression of matrix metalloprotease-13

S Nurmenniemi et al. Exp Cell Res. .

Abstract

Human mesenchymal stem cells (hMSCs) are multipotent cells that are found in the bone marrow. Inflammation and tissue damage mobilize MSCs and induce their migration towards the damaged site through mechanisms that are not well defined. Toll-like receptor-9 (TLR9) is a cellular receptor for microbial and vertebrate DNA. Stimulation of TLR9 induces inflammatory and invasive responses in TLR9-expressing cells. We studied here the expression of TLR9 in human MSCs and the effects of synthetic TLR9-agonists on their invasion. Constitutive expression of TLR9 was detected in human MSCs but the expression was suppressed when MSCs were induced to differentiate into osteoblasts. Using standard invasion assays and a novel organotypic culture model based on human myoma tissue, we discovered that stimulation with the TLR9 agonistic, CpG oligonucleotides increased the invasion capacity of undifferentiated MSCs. Simultaneously, an increase in MMP-13 synthesis and activity was detected in the CpG-activated MSCs. Addition of anti-MMP-13 antibody significantly diminished the CpG-induced hMSC invasion. We conclude that treatment with TLR9-ligands increases MSC invasiveness, and this process is at least partially MMP-13-mediated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources