Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Mar;61(3):552-60.
doi: 10.1172/JCI108966.

Glucagon binding and adenylate cyclase activity in liver membranes from untreated and insulin-treated diabetic rats

Glucagon binding and adenylate cyclase activity in liver membranes from untreated and insulin-treated diabetic rats

V Soman et al. J Clin Invest. 1978 Mar.

Retraction in

Abstract

To investigate the role of hepatic glucagon receptors in the hypersensitivity to glucagon observed in insulin-deprived diabetics, liver plasma membranes were prepared from control rats and from streptozotocin-induced diabetic rats some of whom were treated with high-dose and low-dose insulin. The untreated diabetic animals exhibited hyperglycemia, weight loss, hypoinsulinemia, and hyperglucagonemia. High-dose insulin treatment (2 U Protamine-zinc-insulin/100 g per day) resulted in normoglycemia, normal weight gain, mild hyperinsulinemia, and return of glucagon levels toward base line. The low-dose (1 U protamine-zinc-insulin/100 g per day) insulin-treated diabetic group demonstrated chemical changes intermediate between the untreated and the high-dose insulin-treated animals. In liver plasma membranes from the untreated diabetic rats, specific binding of (125)I-glucagon was increased by 95%. Analysis of binding data suggested that the changes in glucagon binding were a consequence of alterations in binding capacity rather than changes in binding affinity. Furthermore, in the untreated diabetic rats, both basal and glucagon (2 muM)-stimulated adenylate cyclase activity were twofold higher than in controls. In the high-dose insulin-treated diabetic rats, glucagon binding and basal and glucagon-stimulated adenylate cyclase activity were normalized to control values, whereas low-dose insulin treatment resulted in changes intermediate between control and untreated diabetic rats. In contrast to glucagon-stimulated adenylate cyclase activity, fluoride-stimulated adenylate cyclase activity was similar in all groups of rats. Liver plasma membranes from untreated and insulin-treated diabetic animals degraded (125)I-glucagon to the same extent as control rats. The specific binding of (125)I-insulin in the untreated diabetic animals was 40% higher than in control rats. In low-dose insulin-treated diabetic rats, insulin binding was not significantly different from that of control rats, whereas in the high-dose insulin-treated group in whom plasma insulin was 70% above control levels, insulin binding was 30% lower than in control rats. These findings suggest that alterations in glucagon receptors may contribute to the augmented glycemic and ketonemic response to glucagon observed in insulin-deprived diabetics.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1962 May 5;194:495-6 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. J Clin Invest. 1977 Jul;60(1):224-32 - PubMed
    1. N Engl J Med. 1977 Jun 2;296(22):1250-3 - PubMed
    1. Diabetes. 1975 Mar;24(3):257-62 - PubMed

Publication types

MeSH terms