Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;88(3):425-38.
doi: 10.1139/o09-115.

Origami in outer membrane mimetics: correlating the first detailed images of refolded VDAC with over 20 years of biochemical data

Affiliations
Review

Origami in outer membrane mimetics: correlating the first detailed images of refolded VDAC with over 20 years of biochemical data

William A T Summers et al. Biochem Cell Biol. 2010 Jun.

Erratum in

  • Biochem Cell Biol. 2010 Oct;88(5):871-3

Abstract

Mitochondrial porin forms an aqueous pore in the outer membrane, through which selective passage of small metabolites and ions occurs, thereby regulating both mitochondrial function and cellular respiration. Investigations of the structure and function of porin have been performed with whole mitochondria, membrane vesicles, artificial membranes, and in detergent solutions, resulting in numerous models of porin structure. The mechanisms by which this protein functions are undoubtedly linked to its structure, which remained elusive until 2008, with reports of 3 high-resolution structures of this voltage-dependent, anion-selective channel (VDAC). The barrel structure is relatively simple yet unique: it is arranged as 19 anti-parallel beta-strands, with beta-strands 1 and 19 aligned parallel to each other to close the barrel. The N-terminal helical component is located within the lumen of the channel, although its precise structure and location in the lumen varies. With the basic barrel structure in hand, the data obtained in attempts to model the structure and understand porin over the past 20 years can be re-evaluated. Herein, using the mammalian VDAC structures as templates, the amassed electrophysiological and biochemical information has been reassessed with respect to the functional mechanisms of VDAC activity, with a focus on voltage-dependent gating.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources