Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 26;28(33):5458-66.
doi: 10.1016/j.vaccine.2010.05.073. Epub 2010 Jun 15.

Deletion of a prophage-like element causes attenuation of Salmonella enterica serovar Enteritidis and promotes protective immunity

Affiliations

Deletion of a prophage-like element causes attenuation of Salmonella enterica serovar Enteritidis and promotes protective immunity

Daniela V Araya et al. Vaccine. .

Abstract

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a wide host range serovar belonging to the S. enterica genus. Worldwide, it is one of the most frequent causes of food borne disease. Similar to S. Typhimurium, some virulence genes of S. Enteritidis are located in pathogenicity islands and prophages. In this study we have generated a mutant strain of S. Enteritidis lacking a prophage-like element, denominated varphiSE12. The resulting mutant strain was attenuated and promoted protective immunity in infected mice. Although S. Enteritidis strains lacking the complete prophage varphiSE12 remained capable of surviving inside phagocytic cells, they showed a significantly reduced capacity to colonize internal organs and failed to cause lethal disease in mice. Consistent with these data, infection with S. Enteritidis strains lacking prophage varphiSE12 promoted the production of anti-Salmonella IgG antibodies and led to protection against a challenge with virulent strains of S. Enteritidis. These results suggest that strains lacking this prophage can induce a protective immunity in mice and be considered as potential attenuated vaccines against S. Enteritidis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources