Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;20(2):93-6.
doi: 10.1111/j.1532-849X.2010.00623.x.

Additive CAD/CAM process for dental prostheses

Affiliations

Additive CAD/CAM process for dental prostheses

Nelson R F A Silva et al. J Prosthodont. 2011 Feb.

Abstract

This article describes the evolution of a computer-aided design/computer-aided manufacturing (CAD/CAM) process where ceramic paste is deposited in a layer-by-layer sequence using a computer numerical control machine to build up core and fixed partial denture (FPD) structures (robocasting). Al(2)O(3) (alumina) or ZrO(2) (Y-TZP) are blended into a 0.8% aqueous solution of ammonium polyacrylate in a ratio of approximately 1:1 solid:liquid. A viscosifying agent, hydroxypropyl methylcellulose, is added to a concentration of 1% in the liquid phase, and then a counter polyelectrolyte is added to gel the slurry. There are two methods for robocasting crown structures (cores or FPD framework). One is for the core to be printed using zirconia ink without support materials, in which the stereolithography (STL) file is inverted (occlusal surface resting on a flat substrate) and built. The second method uses a fugitive material composed of carbon black codeposited with the ceramic material. During the sintering process, the carbon black is removed. There are two key challenges to successful printing of ceramic crowns by the robocasting technique. First is the development of suitable materials for printing, and second is the design of printing patterns for assembly of the complex geometry required for a dental restoration. Robocasting has room for improvement. Current development involves enhancing the automation of nozzle alignment for accurate support material deposition and better fidelity of the occlusal surface. An accompanying effort involves calculation of optimal support structures to yield the best geometric results and minimal material usage.

PubMed Disclaimer

Publication types

LinkOut - more resources