Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jan;96(1):34-9.
doi: 10.1113/expphysiol.2009.051219. Epub 2010 Jun 18.

Channelrhodopsin as a tool to investigate synaptic transmission and plasticity

Affiliations
Free article
Review

Channelrhodopsin as a tool to investigate synaptic transmission and plasticity

Philipp Schoenenberger et al. Exp Physiol. 2011 Jan.
Free article

Abstract

The light-gated cation channel channelrhodopsin-2 (ChR2) has been used in a variety of model systems to investigate the function of complex neuronal networks by stimulation of genetically targeted neurons. In slice physiology, ChR2 opens the door to novel types of experiments and greatly extends the technical possibilities offered by traditional electrophysiology. In this short review, we first consider several technical aspects concerning the use of ChR2 in slice physiology, providing examples from our own work. More specifically, we discuss differences between light-evoked action potentials and spontaneous or electrically induced action potentials. Our work implies that light-evoked action potentials are associated with increased calcium influx and a very high probability of neurotransmitter release. Furthermore, we point out the factors limiting the spatial resolution of ChR2 activation. Secondly, we discuss how synaptic transmission and plasticity can be studied using ChR2. Postsynaptic depolarization induced by ChR2 can be combined with two-photon glutamate uncaging to potentiate visually identified dendritic spines. ChR2-mediated stimulation of presynaptic axons induces neurotransmitter release and reliably activates postsynaptic spines. In conclusion, ChR2 is a powerful tool to investigate activity-dependent changes in structure and function of synapses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources