Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr;97(4):777-97.
doi: 10.1085/jgp.97.4.777.

Motion detection and adaptation in crayfish photoreceptors. A spatiotemporal analysis of linear movement sensitivity

Affiliations

Motion detection and adaptation in crayfish photoreceptors. A spatiotemporal analysis of linear movement sensitivity

R M Glantz. J Gen Physiol. 1991 Apr.

Abstract

Impulse and sine wave responses of crayfish photoreceptors were examined to establish the limits and the parameters of linear behavior. These receptors exhibit simple low pass behavior which is well described by the transfer function of a linear resistor-capacitor cascade of three to five stages, each with the same time constant (tau). Additionally, variations in mean light intensity modify tau twofold and the contrast sensitivity by fourfold. The angular sensitivity profile is Gaussian and the acceptance angle (phi) increases 3.2-fold with dark adaptation. The responses to moving stripes of positive and negative contrast were measured over a 100-fold velocity range. The amplitude, phase, and waveform of these responses were predicted from the convolution of the receptor's impulse response and angular sensitivity profile. A theoretical calculation based on the convolution of a linear impulse response and a Gaussian sensitivity profile indicates that the sensitivity to variations in stimulus velocity is determined by the ratio phi/tau. These two parameters are sufficient to predict the velocity of the half-maximal response over a wide range of ambient illumination levels. Because phi and tau vary in parallel during light adaptation, it is inferred that many arthropods can maintain approximately constant velocity sensitivity during large shifts in mean illumination and receptor time constant. The results are discussed relative to other arthropod and vertebrate receptors and the strategies that have evolved for movement detection in varying ambient illumination.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biophys J. 1972 Aug;12(8):1073-94 - PubMed
    1. Science. 1974 Jan 18;183(4121):161-72 - PubMed
    1. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):437-67 - PubMed
    1. J Gen Physiol. 1976 Feb;67(2):235-76 - PubMed
    1. J Physiol. 1974 Nov;242(3):685-727 - PubMed

Publication types