Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;34(1):45-56.
doi: 10.1007/s00449-010-0445-3. Epub 2010 Jun 19.

Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans

Affiliations

Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans

K Vidya Shetty et al. Bioprocess Biosyst Eng. 2011 Jan.

Abstract

A novel bioreactor called pulsed plate bioreactor (PPBR) with cell immobilised glass particles in the interplate spaces was used for continuous aerobic biodegradation of phenol present in wastewater. A mathematical model consisting of mass balance equations and accounting for simultaneous external film mass transfer, internal diffusion and reaction is presented to describe the steady-state degradation of phenol by Nocardia hydrocarbonoxydans (Nch.) in this bioreactor. The growth of Nch. on phenol was found to follow Haldane substrate inhibition model. The biokinetic parameters at a temperature of 30 ± 1 °C and pH at 7.0 ± 0.1 are μ (m) = 0.5397 h(-1), K (S) = 6.445 mg/L and K (I) = 855.7 mg/L. The mathematical model was able to predict the reactor performance, with a maximum error of 2% between the predicted and experimental percentage degradations of phenol. The biofilm internal diffusion rate was found to be the slowest step in biodegradation of phenol in a PPBR.

PubMed Disclaimer

Similar articles

LinkOut - more resources