Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 17;17(1):50.
doi: 10.1186/1423-0127-17-50.

Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation

Affiliations

Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation

Fang-hao Lu et al. J Biomed Sci. .

Abstract

Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Subcellular IP3Rs localization. (A) Immunocytochemical staining of cardiomyocyte with specific antibodies for type 1, type 2 and type 3 IP3Rs. (B) Western blot analysis of cardiomyocyte lysates using antibodies specific for IP3R, type 1, type 2 and type 3, respectively. DAPI and FITC to co-stain nuclei and type 3 IP3 receptors and show the spatial relation between the two structures.
Figure 2
Figure 2
Viability of cardiomyocytes was examined using the MTT assay. The cell viability of the control was adjusted to 100%. The data presented are expressed as the mean ± SEM. *p < 0.05 vs Control group; †p < 0.05 vs Ca + Ni + Cd-H/Re .The experiment was repeated three times with similar results.
Figure 3
Figure 3
Hoechst-stained nuclei of apoptotic myocytes were analyzed morphologically and were expressed as the percentage of total nuclei. (magnification × 400). A: control group. B: H/Re group. C: Ca + Ni + Cd-H/Re group. D: NPS-2390 + Ca + Ni + Cd-H/Re. E: 2-APB + Ca + Ni + Cd-H/Re. F: Ru + Ca + Ni + Cd-H/Re group. G: Gd + Ca + Ni + Cd-H/Re The cardiomyocytes were placed in hypoxic culture medium for 3 h and then reoxygenated for 6 h by replacing hypoxic culture medium with fresh DMEM containing 10% FBS, and were treated with different inhibitors, respectively. The data presented are expressed as the mean ± SEM. *p < 0.05 vs Control group; †p < 0.05 vs Ca + Ni + Cd-H/Re.
Figure 4
Figure 4
The measurement of [Ca2+] after hypoxia/reoxygenation by laser confocal microscopy. (a) A: Control group. B: H/Re group. C: Ca + Ni + Cd-H/Re group. D: NPS-2390 + Ca + Ni + Cd-H/Re. E:2-APB + Ca + Ni + Cd-H/Re -H/Re. (b) Values represent the group mean ± SEM of at least four independent experiments. *p < 0.05 vs Control group; †p < 0.05 vs Ca + Ni + Cd-H/Re.
Figure 5
Figure 5
CaR activation induced Ca2+ release from the ER during H/Re. (A) a images represent the beginning of reperfusion (0 min). a' images represent 60 min after reperfusion. (B) Values represent the group mean ± SEM of at least four independent experiments. *p < 0.05 vs Control group; †p < 0.05 vs Ca + Ni + Cd-H/Re . White bar represents reoxygenation 0 min; grey bar represents reoxygenation 60 min.
Figure 6
Figure 6
The measurement of [Ca2+]m after 1 h of reoxygenation by laser confocal microscopy. A: control group. B: H/Re group. C: Ca + Ni + Cd-H/Re group. D: NPS-2390 + Ca + Ni + Cd-H/Re E: 2-APB + Ca + Ni + Cd-H/Re -H/Re. F: Ru + Ca + Ni + Cd-H/Re group. (B) Value represents the group mean ± SEM of at least four independent experiments. *p < 0.05 vs Control group; †p < 0.05 vs Ca + Ni + Cd-H/Re . (C) Effect of hypoxia/reoxygenation and CaR activation on △ψm in neonatal rat cardiomyocytes Summarized data for the relative changes of JC-1 fluorescence. Data are mean ± SEM. †p < 0.05 vs sham control group *p < 0.05 vs Ca + Ni + Cd-H/Re group.
Figure 7
Figure 7
The intact (A) and p20 (B) of BAP31 expression during H/Re. A: sham control group. B: H/Re group. C: Ca + Ni + Cd-H/Re group. D: NPS-2390 + Ca + Ni + Cd-H/Re. E: 2-APB + Ca + Ni + Cd-H/Re. The fold change values were mean ± SEM n = 3-4.*p < 0.05 vs control group †p < 0.05 vs H/Re (C)
Figure 8
Figure 8
Bax (A) and bak (B) translocation to the mitochondrial fractions in rat cardiomyocytes after H/Re. A: control group, B: H/Re group, C: Ca + Ni + Cd-H/Re group, D: NPS-2390 + Ca + Ni + Cd-H/Re group and E: Ru + Ca + Ni + Cd-H/Re group. The fold-change values are mean ± SEM, n = 3-4, *p < 0.05 vs. control group †p < 0.05 vs. H/Re (C). Black bar represented the fold change of bax; white bar represented the fold change of bak.
Figure 9
Figure 9
The release of cytochrome-C from mitochondrial fractions. A: control group. B: H/Re group. C: Ca + Ni + Cd-H/Re group. D: NPS-2390 + Ca + Ni + Cd-H/Re group. E: Ru + Ca + Ni + Cd-H/Re group. The fold change of cyt c values are mean ± SEM n = 3-4. *p < 0.05 vs control group †p < 0.05 vs H/Re.

Similar articles

Cited by

References

    1. Duchen MR. Role of mitochondria in health and disease. Diabetes. 2004;53(Suppl 1):S96–100. doi: 10.2337/diabetes.53.2007.S96. - DOI - PubMed
    1. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25:365–451. - PubMed
    1. Belmonte S, Morad M. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiomyocytes. Ann NY Acad Sci. 2008;1123:58–63. doi: 10.1196/annals.1420.007. - DOI - PubMed
    1. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survive. Cell. 2007;131:596–610. doi: 10.1016/j.cell.2007.08.036. - DOI - PubMed
    1. Alzayady KJ, Wojicikiewicz RJ. The role of Ca2+ in triggering inositol 1,4,5-trisphophate receptor ubiquitination. Biochem J. 2005;392:601–606. doi: 10.1042/BJ20050949. - DOI - PMC - PubMed

Publication types

MeSH terms