Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 17:10:177.
doi: 10.1186/1471-2334-10-177.

Diversity of Mycobacterium tuberculosis genotypes circulating in Ndola, Zambia

Affiliations

Diversity of Mycobacterium tuberculosis genotypes circulating in Ndola, Zambia

Chanda Mulenga et al. BMC Infect Dis. .

Abstract

Background: Tuberculosis (TB) is one of the major public health problems in Zambia. However, information about lineages of M. tuberculosis complex (MTBC) isolates useful for epidemiology investigations is unknown. In this study, we investigated the diversity of MTBC isolates from Ndola, a typical Zambian urbanized city with a documented high HIV prevalence.

Methods: This was part of a prospective cohort study in subjects with sputum smear-positive pulmonary TB. Spoligotyping was used to genotype the MTBC isolates and establish the circulating lineages. The 15-locus Mycobacterial Interspersed Repetitive Units - Variable Number Tandem Repeats (MIRU-VNTR) typing was used to study recent transmission.

Results: A total of 98 different spoligotypes were identified among 273 MTBC isolates. The majority (64.8%) of the isolates belonged to 9 known families, while 96 (35.2%) of the isolates were orphans. While LAM (41.8%) was the largest spoligotype family observed, most of the isolates (87.7%) belonging to the SAF1 family, with a significant portion coming from the T (13.6%), and X (5.9%) families. A few isolates (3.6%) belonged to the CAS, EAI, H, S, X1-LAM9 or U families. MIRU-VNTR typing was highly discriminatory (h = 0.988) among the 156 isolates tested in our sample, and increased the discrimination among 82 SAF1 isolates from 6 to 46 distinct patterns. In addition, 3.2% (5/156) of cases with available MIRU-VNTR results harbored more than one MTBC strain.

Conclusions: Our findings show a limited diversity of MTBC in Ndola with a high clustering rate (37.7%), which indicates that recent transmission plays an appreciable role in the dynamics of TB disease in this setting. This conclusion emphasizes the importance of early diagnosis and timely treatment. The results also confirm that MIRU-VNTR typing is suitable for studying the molecular epidemiology of TB in Ndola.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distinct Spoligotypes of M. tuberculosis isolates from Ndola. The dendogram was generated using the dice coefficient and the unweighted pair group method with arithmetic averages (UPGMA) using the MIRU-VNTRplus program [20].
Figure 2
Figure 2
Spoligotyping and MIRU-VNTR clustering of representative M. tuberculosis isolates from Ndola. The dendogram generated using the dice coefficient and the unweighted pair group method with arithmetic averages (UPGMA) using the MIRU-VNTRplus program [20]. ND: Not determemined.
Figure 3
Figure 3
MIRU-VNTR clustering of M. tuberculosis isolates belonging to the SAF1 family. The dendogram was generated using the dice coefficient and the unweighted pair group method with arithmetic averages (UPGMA) using the MIRU-VNTRplus program [20].

Similar articles

Cited by

References

    1. World Health Organization. Global Tuberculosis Control WHO Report. WHO/HTM/TB/2009.411, Geneva, Switzerland, WHO; 2009.
    1. Central Statistical Office (CSO), Ministry of Health (MOH), Tropical Diseases Research Centre (TDRC), University of Zambia (UNZA), and Macro International Inc. Zambia Demographic and Health Survey 2007. Calverton, Maryland, USA: CSO and Macro International Inc; 2009.
    1. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31(2):406–409. - PMC - PubMed
    1. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosisfor diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907–914. - PMC - PubMed
    1. Frothingham R, Meeker-O'Connell WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology. 1998;144(Pt 5):1189–1196. doi: 10.1099/00221287-144-5-1189. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources