Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;22(4-6):683-700.
doi: 10.1163/092050610X490149. Epub 2010 Jun 21.

Synthesis and in vitro biocompatibility assessment of a poly(amic acid) derived from ethylenediaminetetraacetic dianhydride

Affiliations

Synthesis and in vitro biocompatibility assessment of a poly(amic acid) derived from ethylenediaminetetraacetic dianhydride

Donna T Padavan et al. J Biomater Sci Polym Ed. 2011.

Abstract

Poly(amic acid) (PAA) derived from ethylenediaminetetracetic dianhydride shows great potential as a biomaterial suitable for biomedical applications. To evaluate this polymer class further, in vitro cell toxicity (WST-1/ECS, ELISA based) and cell compatibility (cell adhesion and cell proliferation) tests were conducted to establish structure-toxicity relationships. PAAs with a number-average molecular weight ranging between 100 to 200 kg/mol were synthesized at 37°C after 24 h. Porcine radial artery cells (RACs) and descending aorta endothelial cells (ECs) were seeded independently in a 96-well cell culture plate at a cell density of 5000 cells/cm(2) to observe toxic effects. Similarly, RACs and ECs were seeded independently onto PAA coated and uncoated cover slips at a cell density of 7000 cells/cm(2) to observe growth patterns. Our results showed no toxicity after 96 h of incubation and in addition, both RACs and ECs adhered and proliferated on the PAA films, preserving their phenotype during this time. The tested synthetic material seems promising as a future biomaterial and should elicit a desired cellular response upon implantation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources