Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;22(8):1001-22.
doi: 10.1163/092050610X497872. Epub 2010 Jun 21.

Block co-polymer nanoparticles with degradable cross-linked core and low-molecular-weight PEG corona for anti-tumour drug delivery

Affiliations

Block co-polymer nanoparticles with degradable cross-linked core and low-molecular-weight PEG corona for anti-tumour drug delivery

Ginu Abraham et al. J Biomater Sci Polym Ed. 2011.

Abstract

Biodegradable/bioeliminable, core-cross-linked, block co-polymer nanoparticles have been synthesized as a potential anti-tumour drug-delivery system. Methacrylate-modified poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-b-PDLLA) composed of low-molecular-weight polymer blocks (<5 kg/mol) were synthesized by ring-opening polymerization and post-polymerization chemical modifications. Nanoparticles with a diameter of 110 ± 20 nm were formed from methacrylate-modified PEG(45)-b-PDLLA(41) in a THF/water mixture (1:3). The particles were then core-cross-linked using a new, highly acid-labile ketal cross-linker. The cross-linked particles had a hydrodynamic diameter of 104 ± 20 nm (in THF/water, 1:3), as determined by DLS. The particles in THF exhibited a similar hydrodynamic diameter. Doxorubicin as a model anti-tumour drug was loaded into the nanoparticles (25-31 wt%). The particles released 50% of the loaded drug slowly approximately in 2 days at pH 5.5 and in 5 days at pH 7.4. The particles degraded to bioeliminable polymer fragments (<40 kg/mol) after the hydrolysis of the ketal cross-links at pH 5.5 in seven days, as determined by GPC. Doxorubicin-loaded cross-linked particles (9.3 μM doxorubicin/2.5 μM polymer) inhibited the viability of human neuroblastoma SH-EP cells, whilst the particles without drug at the same concentration were non-toxic, as determined by an Alamar Blue assay. Flow cytometry experiments revealed that the doxorubicin-loaded cross-linked particles were taken up by SH-EP cells in quantities comparable with free doxorubicin. Overall the results support the value of the cross-linked particles for further investigation as a carrier for anti-tumour drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources