Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 15:(40):1948.
doi: 10.3791/1948.

Eukaryotic polyribosome profile analysis

Affiliations

Eukaryotic polyribosome profile analysis

Anthony M Esposito et al. J Vis Exp. .

Abstract

Protein synthesis is a complex cellular process that is regulated at many levels. For example, global translation can be inhibited at the initiation phase or the elongation phase by a variety of cellular stresses such as amino acid starvation or growth factor withdrawal. Alternatively, translation of individual mRNAs can be regulated by mRNA localization or the presence of cognate microRNAs. Studies of protein synthesis frequently utilize polyribosome analysis to shed light on the mechanisms of translation regulation or defects in protein synthesis. In this assay, mRNA/ribosome complexes are isolated from eukaryotic cells. A sucrose density gradient separates mRNAs bound to multiple ribosomes known as polyribosomes from mRNAs bound to a single ribosome or monosome. Fractionation of the gradients allows isolation and quantification of the different ribosomal populations and their associated mRNAs or proteins. Differences in the ratio of polyribosomes to monosomes under defined conditions can be indicative of defects in either translation initiation or elongation/termination. Examination of the mRNAs present in the polyribosome fractions can reveal whether the cohort of individual mRNAs being translated changes with experimental conditions. In addition, ribosome assembly can be monitored by analysis of the small and large ribosomal subunit peaks which are also separated by the gradient. In this video, we present a method for the preparation of crude ribosomal extracts from yeast cells, separation of the extract by sucrose gradient and interpretation of the results. This procedure is readily adaptable to mammalian cells.

PubMed Disclaimer

References

    1. Baim SB, Pietras DF, Eustice DC, Sherman F. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome C. Mol. Cell. Biol. 1985;5:1839–1846. - PMC - PubMed
    1. Ripmaster TL, Vaughn GP, Woolford JL. DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 1993;13:7901–7912. - PMC - PubMed
    1. Anand M, Chakraburtty K, Marton MJ, Hinnebusch AG, Kinzy TG. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem. 2003;278:6985–6991. - PubMed
    1. Serikawa KA. The transcriptome and its translation during recovery from cell cycle arrest in Saccharomyces cerevisiae. Mol Cell Proteomics. 2003;2:191–204. - PubMed
    1. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324:218–223. - PMC - PubMed

Publication types

LinkOut - more resources