Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;40(2):467-76.
doi: 10.1007/s00726-010-0658-4. Epub 2010 Jun 22.

Role of the active site residues arginine-216 and arginine-237 in the substrate specificity of mammalian D-aspartate oxidase

Affiliations

Role of the active site residues arginine-216 and arginine-237 in the substrate specificity of mammalian D-aspartate oxidase

Masumi Katane et al. Amino Acids. 2011 Feb.

Abstract

D-aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. Unlike DAO, which acts on several neutral and basic D-amino acids, DDO is highly specific for acidic D-amino acids. Based on molecular modeling and simulated annealing docking analyses, a recombinant mouse DDO carrying two substitutions (Arg-216 to Leu and Arg-237 to Tyr) was generated (R216L-R237Y variant). This variant and two previously constructed single-point mutants of mouse DDO (R216L and R237Y variants) were characterized to investigate the role of Arg-216 and Arg-237 in the substrate specificity of mouse DDO. The R216L-R237Y and R216L variants acquired a broad specificity for several neutral and basic D-amino acids, and showed a considerable decrease in activity against acidic D-amino acids. The R237Y variant, however, did not show any additional specificity for neutral or basic D-amino acids and its activity against acidic D-amino acids was greatly reduced. The kinetic properties of these variants indicated that the Arg-216 residue is important for the catalytic activity and substrate specificity of mouse DDO. However, Arg-237 is, apparently, only marginally involved in substrate recognition, but is important for catalytic activity. Notably, the substrate specificity of the R216L-R237Y variant differed significantly from that of the R216L variant, suggesting that Arg-237 has subsidiary effects on substrate specificity. Additional experiments using several DDO and DAO inhibitors also suggested the involvement of Arg-216 in the substrate specificity and catalytic activity of mouse DDO and that Arg-237 is possibly involved in substrate recognition by this enzyme. Collectively, these results indicate that Arg-216 and Arg-237 play crucial and subsidiary role(s), respectively, in the substrate specificity of mouse DDO.

PubMed Disclaimer

Similar articles

Cited by

Publication types