Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 14;132(27):9236-9.
doi: 10.1021/ja104330g.

Hypervalent lambda3-bromane strategy for Baeyer-Villiger oxidation: selective transformation of primary aliphatic and aromatic aldehydes to formates, which is missing in the classical Baeyer-Villiger oxidation

Affiliations

Hypervalent lambda3-bromane strategy for Baeyer-Villiger oxidation: selective transformation of primary aliphatic and aromatic aldehydes to formates, which is missing in the classical Baeyer-Villiger oxidation

Masahito Ochiai et al. J Am Chem Soc. .

Abstract

A conceptually distinct, modern strategy for Baeyer-Villiger oxidation (BVO) was developed. Our novel method involves initial hydration of water to carbonyl compounds, followed by ligand exchange of hypervalent aryl-lambda(3)-bromane on bromane(III) with the resulting hydrate, yielding a new type of activated Criegee intermediate. The intermediate undergoes BV rearrangement and produces an ester via facile reductive elimination of an aryl-lambda(3)-bromanyl group, because of the hypernucleofugality. The novel strategy makes it possible to induce selectively the BV rearrangement of straight chain primary aliphatic as well as aromatic aldehydes, which is missing in the classical BVO: for instance, octanal and benzaldehyde afforded rearranged formate esters with high selectivity (>95%) under our conditions, while the attempted classical BVO produced only carboxylic acids. This firmly establishes the powerful nature of new methodology for BVO.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources