Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Sep;27(9):1635-41.
doi: 10.1089/neu.2010.1378.

Intracranial pressure following penetrating ballistic-like brain injury in rats

Affiliations
Comparative Study

Intracranial pressure following penetrating ballistic-like brain injury in rats

Guo Wei et al. J Neurotrauma. 2010 Sep.

Abstract

Penetrating ballistic brain injury involves a leading shockwave producing a temporary cavity causing substantial secondary injury. In response to the prevalence of this type of brain trauma in the military, a rat model of penetrating ballistic-like brain injury (PBBI) was established. This study focuses on cerebral physiological responses resulting from a PBBI, specifically the immediate and delayed changes in intracranial pressure (ICP) and cerebral perfusion pressure (CPP). ICP/CPP was measured continuously in rats subjected to PBBI, probe insertion alone, or sham injury. Immediately following the PBBI, a transient (<0.1 sec) and dramatic elevation of ICP reaching 280.0 ± 86.0 mm Hg occurred, accompanied by a profound decrease in CPP to -180.2 ± 90.1 mm Hg. This emergent ICP/CPP response resolved spontaneously within seconds, but was followed by a slowly-developing and sustained secondary phase, which peaked at 24 h post-injury, reaching 37.2 ± 10.4 mm Hg, and remained elevated until 72 h post-injury. The measured decrease in CPP reached 85.3 ± 17.2 mm Hg at 3 h post-injury. By comparison, probe insertion alone did not produce the immediate ICP crisis (28.6 ± 9.1 mm Hg), and only a mild and sustained increase in ICP (13.5 ± 2.1 mm Hg) was observed in the following 3 h post-injury. Injury severity, as measured by lesion volume, brain swelling, and neurological deficits at 1, 3, and 7 days post-injury, also reflected the distinctive differences between the dynamics of the PBBI versus controls. These results not only reinforced the severe nature of this model in mimicking the ballistic effect of PBBI, but also established cerebral pathophysiological targets for neuroprotective therapies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources