Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May 1;3(3):135-44.
doi: 10.1046/j.1364-3703.2002.00105.x.

The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins

Affiliations

The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins

Anders B Christensen et al. Mol Plant Pathol. .

Abstract

Summary Two barley (Hordeum vulgare L.) cDNA clones (pBH6-12 and pBH6-17) were isolated from a cDNA library prepared from leaves 6 h after inoculation with Blumeria graminis f.sp. hordei (Bgh). The two transcripts accumulate strongly in response to Bgh, peaking around 6, 15-24 and 48-96 h after inoculation, concomitant with fungal penetration attempts, hypersensitive response and fungal growth. The encoded proteins, HvPR-17a and HvPR-17b, belong to a new family of plant pathogenesis-related proteins, designated 'PR-17'. The family also include NtPRp27 from tobacco (Okushima et al., 2000, Plant Mol. Biol.42, 479-488) and WCI-5 from wheat (Görlach et al., 1996, Plant Cell8, 629-643), responsive to viral and fungal infection, respectively. Antisera were raised to HvPR-17a and HvPR-17b, and the proteins exhibit apparent molecular weights of 26 and 24 kDa, respectively. They accumulate in the mesophyll apoplast following Bgh-inoculation, as well as in the leaf epidermis, the only tissue to be invaded by the fungus. Several homologous plant proteins exist, and a highly conserved part of the members of this new protein family show similarity to the active site and to the peptide-binding groove of the exopeptidase 'aminopeptidase N' from eukaryotes and the endopeptidase 'thermolysin' from bacteria.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources