Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov;180(8):1213-25.
doi: 10.1007/s00360-010-0492-8. Epub 2010 Jun 23.

Acid-base regulation in the plainfin midshipman (Porichthys notatus): an aglomerular marine teleost

Affiliations

Acid-base regulation in the plainfin midshipman (Porichthys notatus): an aglomerular marine teleost

Steve F Perry et al. J Comp Physiol B. 2010 Nov.

Abstract

The plainfin midshipman (Porichthys notatus) possesses an aglomerular kidney and like other marine teleosts, secretes base into the intestine to aid water absorption. Each of these features could potentially influence acid-base regulation during respiratory acidosis either by facilitating or constraining HCO(3)(-) accumulation, respectively. Thus, in the present study, we evaluated the capacity of P. notatus to regulate blood acid-base status during exposure to increasing levels of hypercapnia (nominally 1-5% CO(2)). Fish exhibited a well-developed ability to increase plasma HCO(3)(-) levels with values of 39.8 ± 2.8 mmol l(-1) being achieved at the most severe stage of hypercapnic exposure (arterial blood PCO(2) = 21.9 ± 1.7 mmHg). Consequently, blood pH, while lowered by 0.15 units (pH = 7.63 ± 0.06) during the final step of hypercapnia, was regulated far above values predicted by chemical buffering (predicted pH = 7.0). The accumulation of plasma HCO(3)(-) during hypercapnia was associated with marked increases in branchial net acid excretion (J (NET)H(+)) owing exclusively to increases in the titratable alkalinity component; total ammonia excretion was actually reduced during hypercapnia. The increase in J (NET)H(+) was accompanied by increases in branchial carbonic anhydrase (CA) enzymatic activity (2.8×) and CA protein levels (1.6×); branchial Na(+)/K(+)-ATPase activity was unaffected. Rectal fluids sampled from control fish contained on average HCO(3)(-) concentrations of 92.2 ± 4.8 mmol l(-1). At the highest level of hypercapnia, rectal fluid HCO(3)(-) levels were increased significantly to 141.8 ± 7.4 mmol l(-1) but returned to control levels during post-hypercapnia recovery (96.0 ± 13.2 mmol l(-1)). Thus, the impressive accumulation of plasma HCO(3)(-) to compensate for hypercapnic acidosis occurred against a backdrop of increasing intestinal HCO(3)(-) excretion. Based on in vitro measurements of intestinal base secretion in Ussing chambers, it would appear that P. notatus did not respond by minimizing base loss during hypercapnia; the increases in base flux across the intestinal epithelium in response to alterations in serosal HCO(3)(-) concentration were similar in preparations obtained from control or hypercapnic fish. Fish returned to normocapnia developed profound metabolic alkalosis owing to unusually slow clearance of the accumulated plasma HCO(3)(-). The apparent inability of P. notatus to effectively excrete HCO(3)(-) following hypercapnia may reflect its aglomerular (i.e., non-filtering) kidney coupled with the normally low rates of urine production in marine teleosts.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Respir Physiol. 1984 Feb;55(2):175-92 - PubMed
    1. Am J Physiol Regul Integr Comp Physiol. 2006 Oct;291(4):R1145-56 - PubMed
    1. Respir Physiol. 1984 Feb;55(2):155-73 - PubMed
    1. J Exp Zool A Comp Exp Biol. 2003 Nov 1;300(1):53-62 - PubMed
    1. Science. 2009 Jan 16;323(5912):359-62 - PubMed

Publication types

LinkOut - more resources