Human tyrosine hydroxylase natural allelic variation: influence on autonomic function and hypertension
- PMID: 20571875
- PMCID: PMC3008933
- DOI: 10.1007/s10571-010-9535-7
Human tyrosine hydroxylase natural allelic variation: influence on autonomic function and hypertension
Abstract
The catecholamine biosynthetic pathway consists of several enzymatic steps in series, beginning with the amino acids phenylalanine and tyrosine, and eventuating in the catecholamines norepinephrine (noradrenaline) and epinephrine (adrenaline). Since the enzyme tyrosine hydroxylase (TH; tyrosine 3-mono-oxygenase; EC 1.14.16.2; chromosome 11p15.5) is generally considered to be rate-limiting in this pathway, probed as to whether common genetic variation at the TH gene occurred, and whether such variants contributed to inter-individual alterations in autonomic function, either biochemical or physiological. We began with sequencing a tetranucleotide (TCAT) repeat in the first intron, and found that the two most common versions, (TCAT)(6) and (TCAT)(10i), predicted heritable autonomic traits in twin pairs. We then conducted systematic polymorphism discovery across the ~8 kbp locus, and discovered numerous variants, principally non-coding. The proximal promoter block contained four common variants, and its haplotypes and SNPs (especially C-824T, rs10770141) predicted catecholamine secretion, environmental stress-induced BP increments, and hypertension. Finally, we found that two of the common promoter variants, C-824T (rs10770141) and A-581G (rs10770140), were functional in that they differentially affected transcriptional activity of the isolated promoter, disrupted recognition motifs for specific transcription factor binding, altered the promoter responses to the co-transfected (exogenous) factors, and bound the endogenous factors in the chromatin fraction of the nucleus. We concluded that common variation in the proximal TH promoter is functional, giving rise to changes in autonomic function and consequently cardiovascular risk.
References
-
- Albanese V, Biguet NF, Kiefer H, Bayard E, Mallet J, Meloni R (2001) Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum Mol Genet 10:1785–1792 - PubMed
-
- Barbeau P, Litaker MS, Jackson RW, Treiber FA (2003) A tyrosine hydroxylase microsatellite and hemodynamic response to stress in a multi-ethnic sample of youth. Ethn Dis 13:186–192 - PubMed
-
- Boomsma D, Busjahn A, Peltonen L (2002) Classical twin studies and beyond. Nat Rev Genet 3:872–882 - PubMed
-
- Chitbangonsyn SW, Mahboubi P, Walker D, Rana BK, Diggle KL, Timberlake DS, Parmer RJ, O’Connor DT (2003) Physical mapping of autonomic/sympathetic candidate genetic loci for hypertension in the human genome: a somatic cell radiation hybrid library approach. J Hum Hypertens 17:319–324 - PubMed
-
- Flatmark T, Stevens RC (1999) Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem Rev 99:2137–2160 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical