Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus
- PMID: 20572793
- PMCID: PMC3014741
- DOI: 10.1673/031.010.4101
Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus
Abstract
Suppressive subtractive hybridization was used to evaluate the differential expression of midgut genes of feral populations of Aedes aegypti (Diptera: Culicidae) from Colombia that are naturally refractory or susceptible to Dengue-2 virus infection. A total of 165 differentially expressed sequence tags (ESTs) were identified in the subtracted libraries. The analysis showed a higher number of differentially expressed genes in the susceptible Ae. aegypti individuals than the refractory mosquitoes. The functional annotation of ESTs revealed a broad response in the susceptible library that included immune molecules, metabolic molecules and transcription factors. In the refractory strain, there was the presence of a trypsin inhibitor gene, which could play a role in the infection. These results serve as a template for more detailed studies aiming to characterize the genetic components of refractoriness, which in turn can be used to devise new approaches to combat transmission of dengue fever.
Figures
Similar articles
-
Comparative expression profiles of midgut genes in dengue virus refractory and susceptible Aedes aegypti across critical period for virus infection.PLoS One. 2012;7(10):e47350. doi: 10.1371/journal.pone.0047350. Epub 2012 Oct 15. PLoS One. 2012. PMID: 23077596 Free PMC article.
-
Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.Biochimie. 2018 Jan;144:160-168. doi: 10.1016/j.biochi.2017.11.005. Epub 2017 Nov 11. Biochimie. 2018. PMID: 29133118
-
Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus infection.Infect Genet Evol. 2012 Oct;12(7):1413-8. doi: 10.1016/j.meegid.2012.04.027. Epub 2012 May 3. Infect Genet Evol. 2012. PMID: 22579482 Free PMC article.
-
Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia.Parasit Vectors. 2017 Aug 9;10(1):381. doi: 10.1186/s13071-017-2319-x. Parasit Vectors. 2017. PMID: 28793920 Free PMC article.
-
Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.Insect Biochem Mol Biol. 2016 Sep;76:70-83. doi: 10.1016/j.ibmb.2016.07.004. Epub 2016 Jul 12. Insect Biochem Mol Biol. 2016. PMID: 27418459 Free PMC article.
Cited by
-
Natural Variation in Resistance to Virus Infection in Dipteran Insects.Viruses. 2018 Mar 9;10(3):118. doi: 10.3390/v10030118. Viruses. 2018. PMID: 29522475 Free PMC article. Review.
-
A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.Biochim Biophys Acta. 2016 Sep;1860(9):1898-909. doi: 10.1016/j.bbagen.2016.05.033. Epub 2016 May 27. Biochim Biophys Acta. 2016. PMID: 27241849 Free PMC article.
-
Controlling arbovirus infection: high-throughput transcriptome and proteome insights.Front Microbiol. 2024 Feb 13;15:1330303. doi: 10.3389/fmicb.2024.1330303. eCollection 2024. Front Microbiol. 2024. PMID: 38414768 Free PMC article. Review.
-
Profiling lipidomic changes in dengue-resistant and dengue-susceptible strains of Colombian Aedes aegypti after dengue virus challenge.PLoS Negl Trop Dis. 2023 Oct 17;17(10):e0011676. doi: 10.1371/journal.pntd.0011676. eCollection 2023 Oct. PLoS Negl Trop Dis. 2023. PMID: 37847671 Free PMC article.
-
Molecular identification, transcript expression, and functional deorphanization of the adipokinetic hormone/corazonin-related peptide receptor in the disease vector, Aedes aegypti.Sci Rep. 2018 Feb 1;8(1):2146. doi: 10.1038/s41598-018-20517-8. Sci Rep. 2018. PMID: 29391531 Free PMC article.
References
-
- Abdelwahid E, Yokokura T. Mitochondrial disruption in Drosophila apoptosis. Developmental Cell. 2007;12(5):793–806. - PubMed
-
- Abraham EG, Donnelly-Doman M. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Molecular Biology. 2005;14(3):271–9. - PubMed
-
- Adelman ZN, Blair CD. Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Molecular Biology. 2001;10(3):265–73. - PubMed
-
- Aksoy S, Maudlin I. Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends in Parasitology. 2001;17(1):29–35. - PubMed
-
- Al-Olayan EM, Williams GT. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. International Journal for Parasitology. 2002;32(9):1133–43. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases