Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;44(3):264-70.
doi: 10.1258/la.2010.009083. Epub 2010 Jun 23.

Evaluation of temperature rise and bonding strength in cements used for permanent head attachments in rats and mice

Affiliations

Evaluation of temperature rise and bonding strength in cements used for permanent head attachments in rats and mice

Martijn J H Agterberg et al. Lab Anim. 2010 Jul.

Abstract

In animal models, devices such as indwelling catheters and intracranial cannulae are often fixed on the skull to allow sampling or injection in the freely moving animal. The most commonly used method to fixate these devices is by embedding them in a 'helmet' of cement which is fixed to the skull with screws. Methylmethacrylate cement is commonly used for this purpose. The disadvantages of this cement are the high polymerization temperature, poor bonding to the bone and long hardening time. We have evaluated the use of glass ionomer cement, carboxylat cement and cyanoacrylic glue as alternative for methylmethacrylate cement. Temperature increase during polymerization of methylmethacrylate cement and glass ionomer cement was measured in the cement on the skull and in the brain of 14 rats in an acute model. In a chronic model, 52 rats and 91 mice were equipped with a 'helmet' of one of the cements. The glass ionomer 'helmets' were applied without or with pretreatment of the skull. The attachment of the cement to the skull was checked every day. After four weeks the bonding strengths of the cements were measured. The glass ionomer cement had less temperature increase during polymerization and good bonding capabilities when compared with methylmethacrylate cement. Mechanical pretreatment of the skull resulted in a significant increase in bonding strength of glass ionomer cement in mice and rats as compared with chemical pretreatment. Furthermore, glass ionomer cement had a shorter hardening time than methylmethacrylate cement, and when the glass ionomer cement was used in prepacked capsules, it was possible to apply the cement sterilely and easily. Cyanoacrylic glue had good bonding capabilities to the skull of mice and is also a good substitute for methylmethacrylate cement.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources