Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 1;137(15):2519-26.
doi: 10.1242/dev.048751. Epub 2010 Jun 23.

Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system

Affiliations

Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system

Shin Yoshimoto et al. Development. .

Abstract

A Y-linked gene, DMY/dmrt1bY, in teleost fish medka and a Z-linked gene, DMRT1, in chicken are both required for male sex determination. We recently isolated a W-linked gene, DM-W, as a paralogue of DMRT1 in Xenopus laevis, which has a ZZ/ZW-type sex-determining system. The DNA-binding domain of DM-W shows high sequence identity with that of DMRT1, but DM-W has no significant sequence similarity with the transactivation domain of DMRT1. Here, we first show colocalization of DM-W and DMRT1 in the somatic cells surrounding primordial germ cells in ZW gonad during sex determination. We next examined characteristics of DM-W and DMRT1 as a transcription factor in vitro. DM-W and DMRT1 shared a DNA-binding sequence. Importantly, DM-W dose-dependently antagonized the transcriptional activity of DMRT1 on a DMRT1-driven luciferase reporter system in 293 cells. We also examined roles of DM-W or DMRT1 in gonadal formation. Some transgenic ZW tadpoles bearing a DM-W knockdown vector had gonads with a testicular structure, and two developed into frogs with testicular gonads. Ectopic DMRT1 induced primary testicular development in some ZW individuals. These observations indicated that DM-W and DMRT1 could have opposite functions in the sex determination. Our findings support a novel model for a ZZ/ZW-type system in which DM-W directs female sex as a sex-determining gene, by antagonizing DMRT1. Additionally, they suggest that DM-W diverged from DMRT1 as a dominant-negative type gene, i.e. as a ;neofunctionalization' gene for the ZZ/ZW-type system. Finally, we discuss a conserved role of DMRT1 in testis formation during vertebrate evolution.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources