Probabilistic models of cognition: exploring representations and inductive biases
- PMID: 20576465
- DOI: 10.1016/j.tics.2010.05.004
Probabilistic models of cognition: exploring representations and inductive biases
Abstract
Cognitive science aims to reverse-engineer the mind, and many of the engineering challenges the mind faces involve induction. The probabilistic approach to modeling cognition begins by identifying ideal solutions to these inductive problems. Mental processes are then modeled using algorithms for approximating these solutions, and neural processes are viewed as mechanisms for implementing these algorithms, with the result being a top-down analysis of cognition starting with the function of cognitive processes. Typical connectionist models, by contrast, follow a bottom-up approach, beginning with a characterization of neural mechanisms and exploring what macro-level functional phenomena might emerge. We argue that the top-down approach yields greater flexibility for exploring the representations and inductive biases that underlie human cognition.
Copyright 2010 Elsevier Ltd. All rights reserved.
Comment in
-
Theory-driven modeling or model-driven theorizing? Comment on McClelland et al. and Griffiths et al.Trends Cogn Sci. 2010 Aug;14(8):343-4. doi: 10.1016/j.tics.2010.05.009. Epub 2010 Jun 17. Trends Cogn Sci. 2010. PMID: 20561812 No abstract available.
-
Emergent and structured cognition in Bayesian models: comment on Griffiths et al. and McClelland et al.Trends Cogn Sci. 2010 Aug;14(8):345-6. doi: 10.1016/j.tics.2010.05.011. Epub 2010 Jun 17. Trends Cogn Sci. 2010. PMID: 20561813 No abstract available.
-
Cognitive Science should be unified: comment on Griffiths et al. and McClelland et al.Trends Cogn Sci. 2010 Aug;14(8):341. doi: 10.1016/j.tics.2010.05.008. Epub 2010 Jun 17. Trends Cogn Sci. 2010. PMID: 20561814 No abstract available.
-
Why emergentist accounts of cognition are more theoretically constraining than structured probability accounts: comment on Griffiths et al. and McClelland et al.Trends Cogn Sci. 2010 Aug;14(8):340. doi: 10.1016/j.tics.2010.05.013. Epub 2010 Jun 26. Trends Cogn Sci. 2010. PMID: 20580306 No abstract available.
-
A computational foundation for cognitive development: comment on Griffths et al. and McLelland et al.Trends Cogn Sci. 2010 Aug;14(8):342-3. doi: 10.1016/j.tics.2010.05.012. Epub 2010 Jun 28. Trends Cogn Sci. 2010. PMID: 20591723 No abstract available.
-
Bridging levels of analysis: comment on McClelland et al. and Griffiths et al.Trends Cogn Sci. 2010 Aug;14(8):344-5. doi: 10.1016/j.tics.2010.05.007. Epub 2010 Jun 16. Trends Cogn Sci. 2010. PMID: 20678716 No abstract available.
-
Neither size fits all: comment on McClelland et al. and Griffiths et al.Trends Cogn Sci. 2010 Aug;14(8):346-7. doi: 10.1016/j.tics.2010.05.010. Epub 2010 Jun 17. Trends Cogn Sci. 2010. PMID: 20678717 Free PMC article. No abstract available.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
