Biocompatibility of intracortical microelectrodes: current status and future prospects
- PMID: 20577634
- PMCID: PMC2889721
- DOI: 10.3389/fneng.2010.00008
Biocompatibility of intracortical microelectrodes: current status and future prospects
Abstract
Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However an important problem reported with all available microelectrodes to date is long-term viability and biocompatibility. Therefore it is essential to understand the signals that lead to neuroglial activation and create a targeted intervention to control the response, reduce the adverse nature of the reactions and maintain an ideal environment for the brain-electrode interface. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering, neurology and biomaterials.
Keywords: brain-machine interface; coating; glial scar; neural interface; neural prosthesis.
Figures



Similar articles
-
Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.Front Neuroeng. 2014 Jul 21;7:24. doi: 10.3389/fneng.2014.00024. eCollection 2014. Front Neuroeng. 2014. PMID: 25100989 Free PMC article.
-
Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.Neurosurg Focus. 2020 Jul;49(1):E7. doi: 10.3171/2020.4.FOCUS20178. Neurosurg Focus. 2020. PMID: 32610294
-
Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.Med Biol Eng Comput. 2016 Jan;54(1):23-44. doi: 10.1007/s11517-015-1430-4. Epub 2016 Jan 11. Med Biol Eng Comput. 2016. PMID: 26753777 Review.
-
[The progress in researches on biocompatibility for direct brain-machine interface].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Dec;24(6):1416-8. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007. PMID: 18232506 Review. Chinese.
-
The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".J Med Internet Res. 2019 Oct 31;21(10):e16339. doi: 10.2196/16339. J Med Internet Res. 2019. PMID: 31674921 Free PMC article.
Cited by
-
Proliferation and Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN Sub-Strates.Int J Mol Sci. 2020 Aug 28;21(17):6249. doi: 10.3390/ijms21176249. Int J Mol Sci. 2020. PMID: 32872379 Free PMC article.
-
Deep Brain Stimulation associated gliosis: A post-mortem study.Parkinsonism Relat Disord. 2018 Sep;54:51-55. doi: 10.1016/j.parkreldis.2018.04.009. Epub 2018 Apr 4. Parkinsonism Relat Disord. 2018. PMID: 29653910 Free PMC article.
-
A review on the performance of brain-computer interface systems used for patients with locked-in and completely locked-in syndrome.Cogn Neurodyn. 2024 Aug;18(4):1419-1443. doi: 10.1007/s11571-023-09995-3. Epub 2023 Aug 19. Cogn Neurodyn. 2024. PMID: 39104673 Free PMC article. Review.
-
pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain.Front Neurosci. 2016 Apr 18;10:151. doi: 10.3389/fnins.2016.00151. eCollection 2016. Front Neurosci. 2016. PMID: 27147944 Free PMC article.
-
μECoG Recordings Through a Thinned Skull.Front Neurosci. 2019 Oct 1;13:1017. doi: 10.3389/fnins.2019.01017. eCollection 2019. Front Neurosci. 2019. PMID: 31632232 Free PMC article.
References
-
- Agnew B. J., Duman J. G., Watson C. L., Coling D. E., Forte J. G. (1999). Cytological transformations associated with parietal cell stimulation: critical steps in the activation cascade. J. Cell. Sci. 112, 2639–2646 - PubMed
LinkOut - more resources
Full Text Sources
Medical
Research Materials