Manifold modeling for brain population analysis
- PMID: 20579930
- PMCID: PMC3020141
- DOI: 10.1016/j.media.2010.05.008
Manifold modeling for brain population analysis
Abstract
This paper describes a method for building efficient representations of large sets of brain images. Our hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation, by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional manifold from a given data set. The manifold model is generative-brain images can be constructed from a relatively small set of parameters, and new brain images can be projected onto the manifold. This allows to quantify the geometric accuracy of the manifold approximation in terms of projection distance. The manifold coordinates induce a Euclidean coordinate system on the population data that can be used to perform statistical analysis of the population. We evaluate the proposed method on the OASIS and ADNI brain databases of head MR images in two ways. First, the geometric fit of the method is qualitatively and quantitatively evaluated. Second, the ability of the brain manifold model to explain clinical measures is analyzed by linear regression in the manifold coordinate space. The regression models show that the manifold model is a statistically significant descriptor of clinical parameters.
Copyright 2010 Elsevier B.V. All rights reserved.
Figures













Similar articles
-
On the manifold structure of the space of brain images.Med Image Comput Comput Assist Interv. 2009;12(Pt 1):305-12. doi: 10.1007/978-3-642-04268-3_38. Med Image Comput Comput Assist Interv. 2009. PMID: 20426001 Free PMC article.
-
Riemannian manifold learning.IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):796-809. doi: 10.1109/TPAMI.2007.70735. IEEE Trans Pattern Anal Mach Intell. 2008. PMID: 18369250
-
Manifold learning of brain MRIs by deep learning.Med Image Comput Comput Assist Interv. 2013;16(Pt 2):633-40. doi: 10.1007/978-3-642-40763-5_78. Med Image Comput Comput Assist Interv. 2013. PMID: 24579194
-
Regional manifold learning for deformable registration of brain MR images.Med Image Comput Comput Assist Interv. 2012;15(Pt 3):131-8. doi: 10.1007/978-3-642-33454-2_17. Med Image Comput Comput Assist Interv. 2012. PMID: 23286123 Free PMC article.
-
A framework for optimal kernel-based manifold embedding of medical image data.Comput Med Imaging Graph. 2015 Apr;41:93-107. doi: 10.1016/j.compmedimag.2014.06.001. Epub 2014 Jun 9. Comput Med Imaging Graph. 2015. PMID: 25008538 Review.
Cited by
-
Weighted functional boxplot with application to statistical atlas construction.Med Image Comput Comput Assist Interv. 2013;16(Pt 3):584-91. doi: 10.1007/978-3-642-40760-4_73. Med Image Comput Comput Assist Interv. 2013. PMID: 24505809 Free PMC article.
-
Registration of challenging pre-clinical brain images.J Neurosci Methods. 2013 May 30;216(1):62-77. doi: 10.1016/j.jneumeth.2013.03.015. Epub 2013 Apr 1. J Neurosci Methods. 2013. PMID: 23558335 Free PMC article.
-
Multiple Atlas construction from a heterogeneous brain MR image collection.IEEE Trans Med Imaging. 2013 Mar;32(3):628-35. doi: 10.1109/TMI.2013.2239654. Epub 2013 Jan 14. IEEE Trans Med Imaging. 2013. PMID: 23335665 Free PMC article.
-
BrainPrint: a discriminative characterization of brain morphology.Neuroimage. 2015 Apr 1;109:232-48. doi: 10.1016/j.neuroimage.2015.01.032. Epub 2015 Jan 19. Neuroimage. 2015. PMID: 25613439 Free PMC article.
-
Using manifold learning for atlas selection in multi-atlas segmentation.PLoS One. 2013 Aug 2;8(8):e70059. doi: 10.1371/journal.pone.0070059. Print 2013. PLoS One. 2013. PMID: 23936376 Free PMC article. Clinical Trial.
References
-
- Lorenzen P, Davis BC, Joshi S. Unbiased atlas formation via large deformations metric mapping. MICCAI. 2005:411–418. - PubMed
-
- Joshi S, Davis B, Jomier M, Gerig G. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage. 2004;23(Supplement 1):S151–S160. mathematics in Brain Imaging. - PubMed
-
- Avants B, Gee JC. Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage. 2004;23(Supplement 1):S139–S150. - PubMed
Publication types
MeSH terms
Grants and funding
- P50 AG05681/AG/NIA NIH HHS/United States
- P20 MH071616/MH/NIMH NIH HHS/United States
- 5R01EB007688-02/EB/NIBIB NIH HHS/United States
- R01 AG021910/AG/NIA NIH HHS/United States
- P50 MH071616/MH/NIMH NIH HHS/United States
- U24 RR021382/RR/NCRR NIH HHS/United States
- R01 EB007688/EB/NIBIB NIH HHS/United States
- U01 AG024904/AG/NIA NIH HHS/United States
- U19 AG010483/AG/NIA NIH HHS/United States
- U54 EB005149/EB/NIBIB NIH HHS/United States
- P01 AG003991/AG/NIA NIH HHS/United States
- P50 AG005681/AG/NIA NIH HHS/United States
- U54-EB005149/EB/NIBIB NIH HHS/United States
- P01 AG03991/AG/NIA NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical