Characterization of N-linked protein glycosylation in Helicobacter pullorum
- PMID: 20581208
- PMCID: PMC2944503
- DOI: 10.1128/JB.00211-10
Characterization of N-linked protein glycosylation in Helicobacter pullorum
Abstract
The first bacterial N-linked glycosylation system was discovered in Campylobacter jejuni, and the key enzyme involved in the coupling of glycan to asparagine residues within the acceptor sequon of the glycoprotein is the oligosaccharyltransferase PglB. Emerging genome sequence data have revealed that pglB orthologues are present in a subset of species from the Deltaproteobacteria and Epsilonproteobacteria, including three Helicobacter species: H. pullorum, H. canadensis, and H. winghamensis. In contrast to C. jejuni, in which a single pglB gene is located within a larger gene cluster encoding the enzymes required for the biosynthesis of the N-linked glycan, these Helicobacter species contain two unrelated pglB genes (pglB1 and pglB2), neither of which is located within a larger locus involved in protein glycosylation. In complementation experiments, the H. pullorum PglB1 protein, but not PglB2, was able to transfer C. jejuni N-linked glycan onto an acceptor protein in Escherichia coli. Analysis of the characterized C. jejuni N-glycosylation system with an in vitro oligosaccharyltransferase assay followed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry demonstrated the utility of this approach, and when applied to H. pullorum, PglB1-dependent N glycosylation with a linear pentasaccharide was observed. This reaction required an acidic residue at the -2 position of the N-glycosylation sequon, as for C. jejuni. Attempted insertional knockout mutagenesis of the H. pullorum pglB2 gene was unsuccessful, suggesting that it is essential. These first data on N-linked glycosylation in a second bacterial species demonstrate the similarities to, and fundamental differences from, the well-studied C. jejuni system.
Figures





Similar articles
-
Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system.Glycobiology. 2018 Apr 1;28(4):233-244. doi: 10.1093/glycob/cwx110. Glycobiology. 2018. PMID: 29340583 Free PMC article.
-
Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.Open Biol. 2015 Apr;5(4):140227. doi: 10.1098/rsob.140227. Open Biol. 2015. PMID: 25833378 Free PMC article.
-
Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB.BMC Biotechnol. 2012 Sep 24;12:67. doi: 10.1186/1472-6750-12-67. BMC Biotechnol. 2012. PMID: 23006740 Free PMC article.
-
Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins.J Pharm Pharmacol. 2015 Mar;67(3):338-50. doi: 10.1111/jphp.12321. Epub 2014 Sep 22. J Pharm Pharmacol. 2015. PMID: 25244672 Free PMC article. Review.
-
Protein glycosylation in bacteria: sweeter than ever.Nat Rev Microbiol. 2010 Nov;8(11):765-78. doi: 10.1038/nrmicro2383. Nat Rev Microbiol. 2010. PMID: 20948550 Review.
Cited by
-
Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species.BMC Genomics. 2018 Nov 20;19(1):830. doi: 10.1186/s12864-018-5171-2. BMC Genomics. 2018. PMID: 30458713 Free PMC article.
-
Polypeptide binding specificities of Saccharomyces cerevisiae oligosaccharyltransferase accessory proteins Ost3p and Ost6p.Protein Sci. 2011 May;20(5):849-55. doi: 10.1002/pro.610. Epub 2011 Apr 4. Protein Sci. 2011. PMID: 21384453 Free PMC article.
-
Diversity in the protein N-glycosylation pathways within the Campylobacter genus.Mol Cell Proteomics. 2012 Nov;11(11):1203-19. doi: 10.1074/mcp.M112.021519. Epub 2012 Aug 2. Mol Cell Proteomics. 2012. PMID: 22859570 Free PMC article.
-
Targeted identification of glycosylated proteins in the gastric pathogen Helicobacter pylori (Hp).Mol Cell Proteomics. 2013 Sep;12(9):2568-86. doi: 10.1074/mcp.M113.029561. Epub 2013 Jun 10. Mol Cell Proteomics. 2013. PMID: 23754784 Free PMC article.
-
Epsilonproteobacteria in humans, New Zealand.Emerg Infect Dis. 2012 Mar;18(3):510-2. doi: 10.3201/eid1803.110875. Emerg Infect Dis. 2012. PMID: 22377283 Free PMC article.
References
-
- Baar, C., M. Eppinger, G. Raddatz, J. Simon, C. Lanz, O. Klimmek, R. Nandakumar, R. Gross, A. Rosinus, H. Keller, B. Linke, F. Meyer, H. Lederer, and S. C. Schuster. 2003. Complete genome sequence and analysis of Wolinella succinogenes. Proc. Natl. Acad. Sci. U. S. A. 100:11690-11695. - PMC - PubMed
-
- Campbell, B. J., A. S. Engel, M. L. Porter, and K. Takai. 2006. The versatile ɛ-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4:458-468. - PubMed
-
- Chavan, M., and W. Lennarz. 2006. The molecular basis of coupling of translocation and N-glycosylation. Trends Biochem. Sci. 31:7-10. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- BB/F009496/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- BB/F009321/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- WT_/Wellcome Trust/United Kingdom
- BBC5196701/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
- B19088/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom
LinkOut - more resources
Full Text Sources
Molecular Biology Databases