The pre-mRNA splicing machinery of trypanosomes: complex or simplified?
- PMID: 20581293
- PMCID: PMC2918933
- DOI: 10.1128/EC.00113-10
The pre-mRNA splicing machinery of trypanosomes: complex or simplified?
Abstract
Trypanosomatids are early-diverged, protistan parasites of which Trypanosoma brucei, Trypanosoma cruzi, and several species of Leishmania cause severe, often lethal diseases in humans. To better combat these parasites, their molecular biology has been a research focus for more than 3 decades, and the discovery of spliced leader (SL) trans splicing in T. brucei established a key difference between parasites and hosts. In SL trans splicing, the capped 5'-terminal region of the small nuclear SL RNA is fused onto the 5' end of each mRNA. This process, in conjunction with polyadenylation, generates individual mRNAs from polycistronic precursors and creates functional mRNA by providing the cap structure. The reaction is a two-step transesterification process analogous to intron removal by cis splicing which, in trypanosomatids, is confined to very few pre-mRNAs. Both types of pre-mRNA splicing are carried out by the spliceosome, consisting of five U-rich small nuclear RNAs (U snRNAs) and, in humans, up to approximately 170 different proteins. While trypanosomatids possess a full set of spliceosomal U snRNAs, only a few splicing factors were identified by standard genome annotation because trypanosomatid amino acid sequences are among the most divergent in the eukaryotic kingdom. This review focuses on recent progress made in the characterization of the splicing factor repertoire in T. brucei, achieved by tandem affinity purification of splicing complexes, by systematic analysis of proteins containing RNA recognition motifs, and by mining the genome database. In addition, recent findings about functional differences between trypanosome and human pre-mRNA splicing factors are discussed.
Figures


Similar articles
-
Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors.Eukaryot Cell. 2009 Jul;8(7):990-1000. doi: 10.1128/EC.00075-09. Epub 2009 May 8. Eukaryot Cell. 2009. PMID: 19429779 Free PMC article.
-
Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing.J Biol Chem. 2010 Sep 3;285(36):27982-99. doi: 10.1074/jbc.M109.095349. Epub 2010 Jun 30. J Biol Chem. 2010. PMID: 20592024 Free PMC article.
-
Unconventional rules of small nuclear RNA transcription and cap modification in trypanosomatids.Gene Expr. 2002;10(1-2):3-16. Gene Expr. 2002. PMID: 11868986 Free PMC article. Review.
-
mRNA splicing in trypanosomes.Int J Med Microbiol. 2012 Oct;302(4-5):221-4. doi: 10.1016/j.ijmm.2012.07.004. Epub 2012 Sep 7. Int J Med Microbiol. 2012. PMID: 22964417 Review.
-
A distinct complex of PRP19-related and trypanosomatid-specific proteins is required for pre-mRNA splicing in trypanosomes.Nucleic Acids Res. 2021 Dec 16;49(22):12929-12942. doi: 10.1093/nar/gkab1152. Nucleic Acids Res. 2021. PMID: 34850936 Free PMC article.
Cited by
-
Transcription of Leishmania major U2 small nuclear RNA gene is directed by extragenic sequences located within a tRNA-like and a tRNA-Ala gene.Parasit Vectors. 2016 Jul 19;9(1):401. doi: 10.1186/s13071-016-1682-3. Parasit Vectors. 2016. PMID: 27430335 Free PMC article.
-
The role of genomic location and flanking 3'UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei.Mol Microbiol. 2017 Nov;106(4):614-634. doi: 10.1111/mmi.13838. Epub 2017 Oct 11. Mol Microbiol. 2017. PMID: 28906055 Free PMC article.
-
A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination.Genome Res. 2021 Nov;31(11):2138-2154. doi: 10.1101/gr.275368.121. Epub 2021 Aug 18. Genome Res. 2021. PMID: 34407985 Free PMC article.
-
NetStart 2.0: prediction of eukaryotic translation initiation sites using a protein language model.BMC Bioinformatics. 2025 Aug 19;26(1):216. doi: 10.1186/s12859-025-06220-2. BMC Bioinformatics. 2025. PMID: 40830753 Free PMC article.
-
Core-Shell DNA-Cholesterol Nanoparticles Exert Lysosomolytic Activity in African Trypanosomes.Chembiochem. 2022 Oct 19;23(20):e202200410. doi: 10.1002/cbic.202200410. Epub 2022 Sep 20. Chembiochem. 2022. PMID: 36040754 Free PMC article.
References
-
- Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B. P., Carrington M., Depledge D. P., Fischer S., Gajria B., Gao X., Gardner M. J., Gingle A., Grant G., Harb O. S., Heiges M., Hertz-Fowler C., Houston R., Innamorato F., Iodice J., Kissinger J. C., Kraemer E., Li W., Logan F. J., Miller J. A., Mitra S., Myler P. J., Nayak V., Pennington C., Phan I., Pinney D. F., Ramasamy G., Rogers M. B., Roos D. S., Ross C., Sivam D., Smith D. F., Srinivasamoorthy G., Stoeckert C. J., Jr., Subramanian S., Thibodeau R., Tivey A., Treatman C., Velarde G., Wang H. 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38:D457–D462 - PMC - PubMed
-
- Avila M. L., Bercovich N., Westergaard G., Levin M. J., Vazquez M. P. 2007. Mapping of the protein-binding interface between splicing factors SF3b155 and p14 of Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 364:26–32 - PubMed
-
- Bangs J. D., Crain P. F., Hashizume T., McCloskey J. A., Boothroyd J. C. 1992. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J. Biol. Chem. 267:9805–9815 - PubMed
-
- Barrandon C., Spiluttini B., Bensaude O. 2008. Non-coding RNAs regulating the transcriptional machinery. Biol. Cell 100:83–95 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous