Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;68(1):48-57.
doi: 10.1002/ana.22009.

Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats

Affiliations

Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats

Roman R Gonzenbach et al. Ann Neurol. 2010 Jul.

Abstract

Objective: Spinal cord injury (SCI) leads to permanent motor and sensory deficits due to the damage of ascending and descending fiber tracts. In addition, malfunctions such as neuropathic pain or muscle spasms develop in many patients, possibly caused by injury-induced plastic changes of neuronal circuits above and below the lesion. New treatment strategies for spinal cord injury aim at enhancing plasticity and neurite growth, for example, by blocking the key neurite growth inhibitor Nogo-A or its downstream effectors. It is therefore crucial to investigate potential effects of such treatments on malfunctions such as muscle spasms. In addition, locomotor training, now a standard therapeutic tool to improve walking ability in incomplete SCI subjects, can be expected to influence the rearrangement of spinal cord circuits and the development of muscle spasms and other malfunctions.

Methods and results: Here we present and validate a new rat model for muscle spasms after incomplete SCI and show that both intrathecal anti-Nogo-A antibody treatment and locomotor training, started early after injury, permanently reduce the development of muscle spasms.

Interpretation: The results show that an antibody-mediated suppression of the growth inhibitory protein Nogo-A leads to functional recovery and a lower level of malfunctions, suggesting the formation of functionally meaningful connections in the damaged spinal cord. Treadmill training early after SCI also has a beneficial effect.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources