Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul 21;132(28):9672-80.
doi: 10.1021/ja101031r.

Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production

Affiliations

Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production

Katherine A Brown et al. J Am Chem Soc. .

Abstract

We present a study of the self-assembly, charge-transfer kinetics, and catalytic properties of hybrid complexes of CdTe nanocrystals (nc-CdTe) and Clostridium acetobutylicum [FeFe]-hydrogenase I (H(2)ase). Molecular assembly of nc-CdTe and H(2)ase was mediated by electrostatic interactions and resulted in stable, enzymatically active complexes. The assembly kinetics was monitored by nc-CdTe photoluminescence (PL) spectroscopy and exhibited first-order Langmuir adsorption behavior. PL was also used to monitor the transfer of photogenerated electrons from nc-CdTe to H(2)ase. The extent to which the intramolecular electron transfer (ET) contributed to the relaxation of photoexcited nc-CdTe relative to the intrinsic radiative and nonradiative (heat dissipation and surface trapping) recombination pathways was shown by steady-state PL spectroscopy to be a function of the nc-CdTe/H(2)ase molar ratio. When the H(2)ase concentration was lower than the nc-CdTe concentration during assembly, the resulting contribution of ET to PL bleaching was enhanced, which resulted in maximal rates of H(2) photoproduction. Photoproduction of H(2) was also a function of the nc-CdTe PL quantum efficiency (PLQE), with higher-PLQE nanocrystals producing higher levels of H(2), suggesting that photogenerated electrons are transferred to H(2)ase directly from core nanocrystal states rather than from surface-trap states. The duration of H(2) photoproduction was limited by the stability of nc-CdTe under the reactions conditions. A first approach to optimization with ascorbic acid present as a sacrificial donor resulted in photon-to-H(2) efficiencies of 9% under monochromatic light and 1.8% under AM 1.5 white light. In summary, nc-CdTe and H(2)ase spontaneously assemble into complexes that upon illumination transfer photogenerated electrons from core nc-CdTe states to H(2)ase, with low H(2)ase coverages promoting optimal orientations for intramolecular ET and solar H(2) production.

PubMed Disclaimer

Publication types

LinkOut - more resources