Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Mar;5(3):861-77.
doi: 10.1093/nar/5.3.861.

Properies of tRNAPhe from yeast carrying a spin label on the 3'-terminal. Interaction with yeast phenylalanyl-tRNA Synthetase and elongation factor Tu from Escherichia coli

Free PMC article

Properies of tRNAPhe from yeast carrying a spin label on the 3'-terminal. Interaction with yeast phenylalanyl-tRNA Synthetase and elongation factor Tu from Escherichia coli

M Sprinzl et al. Nucleic Acids Res. 1978 Mar.
Free PMC article

Abstract

The 2-thioketo function of tRNAPhe-C-s2C-A in which the penultimate cytidine residue is replaced by 20thiocytidine can serve as a site of specific attachment of spin label. By alkylation of tRNAPhe-C-s2C-A with iodoacetamide or its spin label derivatives tRNAPhe-C-(acm)s2C-A or tRNAPheC-(SL)s2C-A are formed. The enzymatic phenylalanylation of these tRNAsPhe revealed that the 2-position of the penultimate cytidine can be modified without impairing this enzymatic reaction but there exists a sterical limitation for the subsituent on this position beyond which the tRNAPhe:phenylalanyl-tRNA synthetase recognition is not possible. Both Phe-tRNAPhe-C-(acm)s2C-A as well as Phe-tRNAPhe-C(SL)s2C-A form ternary complexes with EF-Tu.GTP. The part of the 3'-terminus of tRNAPhe where the additional substituents are attached is therefore not involved in the interaction with this elongation factor. This could be also demonstrated by ESR measurements of spin labelled tRNAsPhe. The correlation times, tauc, for tRNAPhe-C-(SL)s2C-A, Phe-tRNAPhe-C-(SL)s2C-A and Phe-tRNAPhe-C-(SL)s2C-A.EF-Tu:GTP are essentially identical indicating that the structure of the 3'-end of tRNAPhe is not influenced significantly by aminoacylation or ternary complex formation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nucleic Acids Res. 1978 Mar;5(3):879-92 - PubMed
    1. Biochemistry. 1977 Sep 20;16(19):4256-65 - PubMed
    1. Nucleic Acids Res. 1977 Jul;4(7):2205-12 - PubMed
    1. Prog Nucleic Acid Res Mol Biol. 1977;20:1-19 - PubMed
    1. J Biol Chem. 1974 Nov 25;249(22):7102-10 - PubMed

MeSH terms