Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun;260(6 Pt 1):E865-75.
doi: 10.1152/ajpendo.1991.260.6.E865.

Fraction of hepatic cytosolic acetyl-CoA derived from glucose in vivo: relation to PDH phosphorylation state

Affiliations

Fraction of hepatic cytosolic acetyl-CoA derived from glucose in vivo: relation to PDH phosphorylation state

S Kaempfer et al. Am J Physiol. 1991 Jun.

Abstract

We measured the contribution of glucose to hepatic cytosolic acetyl-CoA in vivo in rats and compared it with the phosphorylation state of a potentially regulatory enzyme complex [pyruvate dehydrogenase (PDH)]. Xenobiotic probes were used to sample hepatic cytosolic acetyl-CoA [acetylated sulfamethoxazole (SMX)] and UDP-glucose (glucuronidated acetaminophen) in vivo during [U-14C]glucose infusions. Percent active (dephosphorylated) form of PDH (PDHa) was determined on freeze-clamped liver. First, we confirmed using liver cell elutriation that acetylation of SMX occurs in parenchymal hepatocytes. Next, the fraction of cytosolic acetyl-CoA derived from [14C]glucose in vivo was shown to depend on dietary state. Specific activity of acetyl-CoA relative to plasma glucose or hepatic UDP-glucose was lower after 48 h fasting than after overnight fasting, and glucose refeeding (25 mg.kg-1.min-1 iv) maximally increased [14C]-glucose fractional contribution to acetyl-CoA within 2 h in the overnight-fasted but not in the prolonged fasted group. Hepatic PDHa demonstrated a similar but not identical pattern. The isotopic and enzymatic parameters showed significant correlations (r2 = 0.61 in 48-h fasted-refed group, r2 = 0.28 in overnight-fasted refed group), although [14C]glucose contribution to acetyl-CoA increased disproportionately compared with PDHa as refeeding progressed. The indirect pathway of UDP-glucose synthesis correlated inversely with the fractional contribution of glucose to acetyl-CoA. In summary, the fraction of hepatic acetyl-CoA derived from glucose in vivo is influenced by acute and chronic dietary factors and is only partially explained by PDHa. Regulation of the carbon source of hepatic acetyl-CoA in vivo and interactions suggested by these results (e.g., glucose-fatty acid cycle; branch-point regulation of glucose recycling) can be addressed in a quantitative fashion using this experimental framework.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources