Colloidal PbS quantum dot solar cells with high fill factor
- PMID: 20590129
- DOI: 10.1021/nn100129j
Colloidal PbS quantum dot solar cells with high fill factor
Abstract
We fabricate PbS colloidal quantum dot (QD)-based solar cells using a fullerene derivative as the electron-transporting layer (ETL). A thiol treatment and oxidation process are used to modify the morphology and electronic structure of the QD films, resulting in devices that exhibit a fill factor (FF) as high as 62%. We also show that, for QDs with a band gap of less than 1 eV, an open-circuit voltage (VOC) of 0.47 V can be achieved. The power conversion efficiency reaches 1.3% under 1 sun AM1.5 test conditions and 2.4% under monochromatic infrared (lambda=1310 nm) illumination. A consistent mechanism for device operation is developed through a circuit model and experimental measurements, shedding light on new approaches for optimization of solar cell performance by modifying the interface between the QDs and the neighboring charge transport layers.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous