Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Oct;104(4):2116-24.
doi: 10.1152/jn.01088.2009. Epub 2010 Jun 30.

Stimulus novelty, and not neural refractoriness, explains the repetition suppression of laser-evoked potentials

Affiliations
Free article
Comparative Study

Stimulus novelty, and not neural refractoriness, explains the repetition suppression of laser-evoked potentials

A L Wang et al. J Neurophysiol. 2010 Oct.
Free article

Abstract

Brief radiant laser pulses selectively activate skin nociceptors and elicit transient brain responses (laser-evoked potentials [LEPs]). When LEPs are elicited by pairs of stimuli (S1-S2) delivered at different interstimulus intervals (ISIs), the S2-LEP is strongly reduced at short ISIs (250 ms) and progressively recovers at longer ISIs (2,000 ms). This finding has been interpreted in terms of order of arrival of nociceptive volleys and refractoriness of neural generators of LEPs. However, an alternative explanation is the modulation of another experimental factor: the novelty of the eliciting stimulus. To test this alternative hypothesis, we recorded LEPs elicited by pairs of nociceptive stimuli delivered at four ISIs (250, 500, 1,000, 2,000 ms), using two different conditions. In the constant condition, the ISI was identical across the trials of each block, whereas in the variable condition, the ISI was varied randomly across trials and single-stimulus trials were intermixed with paired trials. Therefore the time of occurrence of S2 was both less novel and more predictable in the constant than in the variable condition. In the constant condition, we observed a significant ISI-dependent suppression of the biphasic negative-positive wave (N2-P2) complex of the S2-LEP. In contrast, in the variable condition, the S2-LEP was completely unaffected by stimulus repetition. The pain ratings elicited by S2 were not different in the two conditions. These results indicate that the repetition-suppression of the S2-LEP is not due to refractoriness in nociceptive afferent pathways, but to a modulation of novelty and/or temporal predictability of the eliciting stimulus. This provides further support to the notion that stimulus saliency constitutes a crucial determinant of LEP magnitude and that a significant fraction of the brain activity time-locked to a brief and transient sensory stimulus is not directly related to the quality and the intensity of the corresponding sensation, but to bottom-up attentional processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources