Metaiodobenzylguanidine scintigraphy in pulmonary and cardiac disease
- PMID: 20592600
- DOI: 10.1097/MCP.0b013e32833b1e1f
Metaiodobenzylguanidine scintigraphy in pulmonary and cardiac disease
Abstract
Purpose of review: Nuclear medicine techniques have the capacity to investigate neuronal dysfunction at the synapse level. For instance, metaiodobenzylguanidine (MIBG) shows a similar uptake, storage and release as norepinephrine. Intravenously injected radiolabeled MIBG is able to reflect neuronal damage induced by inflammation and tumors. The purpose of this review is to evaluate the results and the limitation of these neuronal imaging techniques in patients with pulmonary and cardiac diseases and to give an opinion about the clinical value of these new diagnostic tools.
Recent findings: MIBG neuronal images of the lungs and heart can show heterogeneous distribution patterns with either diminished or increased MIBG uptake and/or washout. These changes reflect changes in endothelial integrity, neuronal innervations and clearance of norepinephrine. Interest in the role of neurotransmitter involvement and the relation between endothelial cell integrity and vascularization is growing and of utmost importance to understand the effect on pathophysiology of diseases.
Summary: At this moment, there is no added clinical value to routinely use MIBG scanning of the lungs and the heart. This is partly due to the many unresolved questions such as what actually happens and which factors influence MIBG uptake and washout under normal physiological circumstances. But the technique, if standardized and when dynamic time acquisition is performed with the latest equipment, such as PET and single photon emission computed tomography-computed tomography (SPECT-CT), has a tremendous potential. It can unravel upto now unknown relationships between innervation, vascularization and endothelial integrity. Other diagnostic tools such as MRI and CT do not have this capacity, so the future looks bright for these new neuronal imaging techniques.
Similar articles
-
Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction.Circ Cardiovasc Imaging. 2010 Sep;3(5):595-603. doi: 10.1161/CIRCIMAGING.109.920538. Epub 2010 Jun 9. Circ Cardiovasc Imaging. 2010. PMID: 20534790
-
[Meta-iodobenzylguanidine scintigraphy of the heart].Ugeskr Laeger. 1997 Nov 3;159(45):6671-5. Ugeskr Laeger. 1997. PMID: 9411981 Review. Danish.
-
Ten years of experience with MIBG applications and the potential of new radiolabeled peptides: a personal overview and concluding remarks.Q J Nucl Med. 1995 Dec;39(4 Suppl 1):150-5. Q J Nucl Med. 1995. PMID: 9002776
-
Characteristics and regulation of 123I-MIBG transport in cultured pulmonary endothelial cells.J Nucl Med. 2006 Mar;47(3):437-42. J Nucl Med. 2006. PMID: 16513613
-
Clinical use of metaiodobenzylguanidine imaging in cardiology.Q J Nucl Med. 1995 Dec;39(4 Suppl 1):29-39. Q J Nucl Med. 1995. PMID: 9002746 Review.
Cited by
-
Molecular imaging of the pulmonary circulation in health and disease.Clin Transl Imaging. 2014;2(5):415-426. doi: 10.1007/s40336-014-0076-9. Epub 2014 Sep 9. Clin Transl Imaging. 2014. PMID: 25360422 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials