Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2010 Jan;5(1):67-9.
doi: 10.4161/psb.5.1.10200.

A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development

Affiliations
Comment

A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development

Jesús Muñoz-Bertomeu et al. Plant Signal Behav. 2010 Jan.

Abstract

Glycolysis is a central metabolic pathway that provides energy and generates precursors for the synthesis of primary metabolites such as amino acids and fatty acids. In plants, glycolysis occurs in the cytosol and plastids, which complicates the understanding of this essential process. As a result, the contribution of each glycolytic pathway to the specific primary metabolite production and the degree of integration of both pathways is still unresolved. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described biochemically. But, up to now, little attention had been paid to GAPCps, probably because they have been considered as "minor isoforms" that catalyze a reversible reaction in plastids where it has been assumed that key glycolytic intermediates are in equilibrium with the cytosol. In the associated study, we have elucidated the crucial role of Arabidopsis GAPCps in the control of primary metabolism in plants. GAPCps deficiency affects amino acid and sugar metabolism and impairs plant development. Specifically, GAPCp deficiency affects the serine supply to roots, provoking a drastic phenotype of arrested root development. Also, we show that the phosphorylated serine biosynthesis pathway is critical to supply serine to non-photosynthetic organs such as roots. These studies provide new insights of the contribution of plastidial glycolysis to plant metabolism and evidence the complex interactions existing between metabolism and development.

Keywords: Arabidopsis; GAPDH; glycolysis; plastid; serine biosynthesis.

PubMed Disclaimer

Comment on

Similar articles

Cited by

References

    1. Plaxton WC. The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:185–214. - PubMed
    1. Ho CL, Saito K. Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids. 2001;20:243–259. - PubMed
    1. Andre C, Froehlich JE, Moll MR, Benning C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell. 2007;19:2006–2022. - PMC - PubMed
    1. Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, et al. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 20. 2009;151:541–558. - PMC - PubMed
    1. Eastmond PJ, Rawsthorne S. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryo. Plant Physiol. 2000;122:767–774. - PMC - PubMed

MeSH terms

Substances