Epigenetic regulation of skeletal myogenesis
- PMID: 20592865
- PMCID: PMC2861743
- DOI: 10.4161/org.6.1.11293
Epigenetic regulation of skeletal myogenesis
Abstract
During embryogenesis a timely and coordinated expression of different subsets of genes drives the formation of skeletal muscles in response to developmental cues. In this review, we will summarize the most recent advances on the "epigenetic network" that promotes the transcription of selective groups of genes in muscle progenitors, through the concerted action of chromatin-associated complexes that modify histone tails and microRNAs (miRNAs). These epigenetic players cooperate to establish focal domains of euchromatin, which facilitates gene transcription, and large portions of heterochromatin, which precludes inappropriate gene expression. We also discuss the analogies and differences in the transcriptional and the epigenetic networks driving developmental and adult myogenesis. The elucidation of the epigenetic basis controlling skeletal myogenesis during development and adult life will facilitate experimental strategies toward generating muscle stem cells, either by reprogramming embryonic stem cells or by inducing pluripotency in adult skeletal muscles. During embryogenesis a timely and coordinated expression of different subsets of genes drives the formation of skeletal muscles in response to developmental cues. In this review, we will summarize the most recent advances on the "epigenetic network" that promotes the transcription of selective groups of genes in muscle progenitors, through the concerted action of chromatin-associated complexes that modify histone tails and microRNAs (miRNAs). These epigenetic players cooperate to establish focal domains of euchromatin, which facilitates gene transcription, and large portions of heterochromatin, which precludes inappropriate gene expression. We also discuss the analogies and differences in the transcriptional and the epigenetic networks driving developmental and adult myogenesis. The elucidation of the epigenetic basis controlling skeletal myogenesis during development and adult life will facilitate experimental strategies toward generating muscle stem cells, either by reprogramming embryonic stem cells or by inducing pluripotency in adult skeletal muscles.
Keywords: chromatin; epigenetics; gene expression; miRNA; skeletal myogenesis.
Figures
References
-
- Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev. 2006;16:525–532. - PubMed
-
- Snider L, Tapscott SJ. Emerging parallels in the generation and regeneration of skeletal muscle. Cell. 2003;113:811–812. - PubMed
-
- Parker MH, Seale P, Rudnicki MA. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet. 2003;4:497–507. - PubMed
-
- Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med. 2009;266:372–389. - PubMed
-
- Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol. 2007;23:645–673. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources