Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2010 Jun 11:8:74.
doi: 10.1186/1741-7007-8-74.

The (r)evolution of cancer genetics

Affiliations
Comment

The (r)evolution of cancer genetics

Francesca D Ciccarelli. BMC Biol. .

Abstract

The identification of an increasing number of cancer genes is opening up unexpected scenarios in cancer genetics. When analyzed for their systemic properties, these genes show a general fragility towards perturbation. A recent paper published in BMC Biology shows how the founder domains of known cancer genes emerged at two macroevolutionary transitions - the advent of the first cell and the transition to metazoan multicellularity. See research article http://www.biomedcentral.com/1741-7007/8/66.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Heterogeneity of genes mutated in different cancer types. So far, more than 1,000 human genes have been identified that carry proven or potential driver mutations involved in cancer progression. Of those, only 85 genes have been found mutated in at least two studies, either in large-scale screenings or in the cancer gene census, which is a literature-based collection of known cancer genes [20]. The latter can be genetically repressive (red) or dominant (orange), which broadly correspond to tumor-suppressors and caretakers and to oncogenes, respectively. This distinction cannot be done for genes identified through large-scale screenings that involve either massive exon [2-6] or whole-genome [7-13] resequencing.

Comment on

References

    1. The International Cancer Genome Project. http://www.icgc.org
    1. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–1812. doi: 10.1126/science.1164382. - DOI - PMC - PubMed
    1. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–1806. doi: 10.1126/science.1164368. - DOI - PMC - PubMed
    1. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113. doi: 10.1126/science.1145720. - DOI - PubMed
    1. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, Teague J, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Forbes S, Jia M, Jones D, Knott H, Kok CY, Lau KW, Leroy C, Lin ML, McBride DJ, Maddison M, Maguire S, McLay K, Menzies A, Mironenko T. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463:360–363. doi: 10.1038/nature08672. - DOI - PMC - PubMed

Publication types

LinkOut - more resources