Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep;11(5):610-5.
doi: 10.1097/PCC.0b013e3181c51690.

Regional lung volume changes during high-frequency oscillatory ventilation

Affiliations

Regional lung volume changes during high-frequency oscillatory ventilation

Gerhard K Wolf et al. Pediatr Crit Care Med. 2010 Sep.

Abstract

Objective: To investigate regional lung volume changes occurring during an inflation-deflation maneuver using high-frequency oscillatory ventilation.

Design: Prospective animal trial.

Setting: Animal research laboratory.

Subjects: Six Yorkshire swine.

Interventions: Electrical impedance tomography was used to quantify regional ventilation during high-frequency oscillatory ventilation. The electrical impedance tomography-derived center of ventilation was used to describe the distribution of regional ventilation, whereas spectral analysis was used to describe regional ventilation-induced impedance changes. Lung injury was induced using surfactant lavage. Animals were transitioned to high-frequency oscillatory ventilation and a slow inflation-deflation maneuver was performed by changing mean airway pressure by 5 cm H2O every 15 mins to a maximum mean airway pressure of 40 cm H2O.

Measurements and main results: The induction of lung injury was associated with a significant shift of the center of ventilation toward nondependent areas and an increase in shunt fraction (p < .001). During the following inflation-deflation maneuver using high-frequency oscillatory ventilation, inflation was associated with a shift of the center of ventilation from nondependent to dependent areas. Center of ventilation was significantly correlated with the shunt fraction (p < .001). Analyzing different lung layers along the gravitational axis separately, nondependent lung areas showed significantly decreased regional ventilation-induced impedance changes at higher pressures, suggesting overdistension, whereas dependent lung areas showed increased impedance changes, suggesting recruitment. The reverse was observed during deflation (all p < .05).

Conclusions: The center of ventilation during high-frequency oscillatory ventilation correlated with oxygenating efficiency as measured by the shunt fraction. Lung recruitment during high-frequency oscillatory ventilation produced a significant shift of regional ventilation toward dependent areas of the lung and led to overdistension of nondependent areas.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources