Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor
- PMID: 20596358
- PMCID: PMC2894215
- DOI: 10.1007/s11671-010-9622-1
Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor
Abstract
SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM-1 cm-2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.
Keywords: Biosensor; Nanorod array; Nanostructure; SnO2.
Figures




Similar articles
-
Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing.Biosens Bioelectron. 2015 Feb 15;64:57-62. doi: 10.1016/j.bios.2014.08.054. Epub 2014 Aug 27. Biosens Bioelectron. 2015. PMID: 25194796
-
Facile strategy for immobilizing horseradish peroxidase on a novel acetate functionalized ionic liquid/MWCNT matrix for electrochemical biosensing.Int J Biol Macromol. 2020 Nov 15;163:358-365. doi: 10.1016/j.ijbiomac.2020.07.005. Epub 2020 Jul 4. Int J Biol Macromol. 2020. PMID: 32634514
-
In situ synthesized gold nanoparticles for direct electrochemistry of horseradish peroxidase.Colloids Surf B Biointerfaces. 2013 Apr 1;104:181-5. doi: 10.1016/j.colsurfb.2012.12.009. Epub 2012 Dec 20. Colloids Surf B Biointerfaces. 2013. PMID: 23314493
-
C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability.Dalton Trans. 2010 Oct 7;39(37):8693-7. doi: 10.1039/c0dt00258e. Epub 2010 Aug 12. Dalton Trans. 2010. PMID: 20714619
-
Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications.Biosens Bioelectron. 2013 Oct 15;48:258-62. doi: 10.1016/j.bios.2013.04.026. Epub 2013 Apr 30. Biosens Bioelectron. 2013. PMID: 23707871
Cited by
-
Field emission from in situ-grown vertically aligned SnO2 nanowire arrays.Nanoscale Res Lett. 2012 Feb 13;7(1):117. doi: 10.1186/1556-276X-7-117. Nanoscale Res Lett. 2012. PMID: 22330800 Free PMC article.
-
Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks.ACS Omega. 2022 Jun 22;7(26):22073-22088. doi: 10.1021/acsomega.2c01033. eCollection 2022 Jul 5. ACS Omega. 2022. PMID: 35811879 Free PMC article. Review.
-
Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods.Sensors (Basel). 2016 Jun 29;16(7):1004. doi: 10.3390/s16071004. Sensors (Basel). 2016. PMID: 27367693 Free PMC article.
-
Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements.Sensors (Basel). 2014 May 16;14(5):8605-32. doi: 10.3390/s140508605. Sensors (Basel). 2014. PMID: 24841244 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources