A dynamic elastic model for segmentation and tracking of the heart in MR image sequences
- PMID: 20598934
- DOI: 10.1016/j.media.2010.05.009
A dynamic elastic model for segmentation and tracking of the heart in MR image sequences
Abstract
Strong prior models are a prerequisite for reliable spatio-temporal cardiac image analysis. While several cardiac models have been presented in the past, many of them are either too complex for their parameters to be estimated on the sole basis of MR Images, or overly simplified. In this paper, we present a novel dynamic model, based on the equation of dynamics for elastic materials and on Fourier filtering. The explicit use of dynamics allows us to enforce periodicity and temporal smoothness constraints. We propose an algorithm to solve the continuous dynamical problem associated to numerically adapting the model to the image sequence. Using a simple 1D example, we show how temporal filtering can help removing noise while ensuring the periodicity and smoothness of solutions. The proposed dynamic model is quantitatively evaluated on a database of 15 patients which shows its performance and limitations. Also, the ability of the model to capture cardiac motion is demonstrated on synthetic cardiac sequences. Moreover, existence, uniqueness of the solution and numerical convergence of the algorithm can be demonstrated.
Copyright 2010 Elsevier B.V. All rights reserved.
Similar articles
-
Spatio-temporal free-form registration of cardiac MR image sequences.Med Image Anal. 2005 Oct;9(5):441-56. doi: 10.1016/j.media.2005.05.004. Med Image Anal. 2005. PMID: 16029955 Clinical Trial.
-
A stochastic filtering technique for fluid flow velocity fields tracking.IEEE Trans Pattern Anal Mach Intell. 2009 Jul;31(7):1278-93. doi: 10.1109/TPAMI.2008.152. IEEE Trans Pattern Anal Mach Intell. 2009. PMID: 19443925
-
A new dynamic elastic model for cardiac image analysis.Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4488-91. doi: 10.1109/IEMBS.2007.4353336. Annu Int Conf IEEE Eng Med Biol Soc. 2007. PMID: 18003002
-
Cardiac motion and deformation recovery from MRI: a review.IEEE Trans Med Imaging. 2012 Feb;31(2):487-503. doi: 10.1109/TMI.2011.2171706. Epub 2011 Oct 13. IEEE Trans Med Imaging. 2012. PMID: 21997253 Review.
-
Imaging cardiac mechanics: what information do we need to extract from cardiac images?Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1545-7. doi: 10.1109/IEMBS.2006.259642. Conf Proc IEEE Eng Med Biol Soc. 2006. PMID: 17946901 Review.
Cited by
-
Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.Med Phys. 2014 May;41(5):052902. doi: 10.1118/1.4867864. Med Phys. 2014. PMID: 24784402 Free PMC article.
-
4D statistical shape modeling of the left ventricle in cardiac MR images.Int J Comput Assist Radiol Surg. 2013 May;8(3):335-51. doi: 10.1007/s11548-012-0787-1. Epub 2012 Aug 15. Int J Comput Assist Radiol Surg. 2013. PMID: 22893114
-
Fully automatic segmentation of 4D MRI for cardiac functional measurements.Med Phys. 2019 Jan;46(1):180-189. doi: 10.1002/mp.13245. Epub 2018 Nov 20. Med Phys. 2019. PMID: 30352129 Free PMC article.
-
Comparison of different segmentation approaches without using gold standard. Application to the estimation of the left ventricle ejection fraction from cardiac cine MRI sequences.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2663-6. doi: 10.1109/IEMBS.2011.6090732. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22254889 Free PMC article.
-
Improved Estimation of Cardiac Function Parameters Using a Combination of Independent Automated Segmentation Results in Cardiovascular Magnetic Resonance Imaging.PLoS One. 2015 Aug 19;10(8):e0135715. doi: 10.1371/journal.pone.0135715. eCollection 2015. PLoS One. 2015. PMID: 26287691 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous