Effect of increased HoxB4 on human megakaryocytic development
- PMID: 20599537
- PMCID: PMC2921174
- DOI: 10.1016/j.bbrc.2010.06.075
Effect of increased HoxB4 on human megakaryocytic development
Abstract
In order to produce clinically useful quantities of platelets ex vivo we may need to firstly enhance early self-renewal of hematopoietic stem cells (HSCs) and/or megakaryocyte (Mk) progenitors. The homeodomain transcription factor HoxB4 has been shown to be an important regulator of stem cell renewal and hematopoiesis; however, its effect on megakaryopoiesis is unclear. In this study, we investigated the effect of HoxB4 overexpression or RNA silencing on megakaryocytic development in the human TF1 progenitor cell line; we then used recombinant tPTD-HoxB4 fusion protein to study the effect of exogenous HoxB4 on megakaryocytic development of human CD34 positively-selected cord blood cells. We found that ectopic HoxB4 in TF1 cells increased the antigen expression of CD61and CD41a, increased the gene expression of thrombopoietin receptor (TpoR), Scl-1, Cyclin D1, Fog-1 and Fli-1 while it decreased c-Myb expression. HoxB4 RNA silencing in TF1 cells decreased the expression of CD61 and CD41a and decreased Fli-1 expression while it increased the expression of c-Myb. Recombinant tPTD-HoxB4 fusion protein increased the percentages and absolute numbers of CD41a and CD61 positive cells during megakaryocytic differentiation of CD34 positively-selected cord blood cells and increased the numbers of colony-forming unit-megakaryocyte (CFU-Mk). Adding tPTD-HoxB4 fusion protein increased the gene expression of TpoR, Cyclin D1, Fog-1 and Fli-1 while it inhibited c-Myb expression. Our data suggest that increased HoxB4 enhanced early megakaryocytic development in human TF1 cells and CD34 positively-selected cord blood cells primarily by upregulating TpoR and Fli-1 expression and downregulating c-Myb expression. Increasing HoxB4 expression or adding recombinant HoxB4 protein might be a way to expand Mks for the production of platelets for use in transfusion medicine.
Copyright 2010 Elsevier Inc. All rights reserved.
Figures



Similar articles
-
OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.PLoS One. 2013;8(3):e58123. doi: 10.1371/journal.pone.0058123. Epub 2013 Mar 1. PLoS One. 2013. PMID: 23469264 Free PMC article.
-
Ets-dependent regulation of target gene expression during megakaryopoiesis.J Biol Chem. 2004 Dec 10;279(50):52183-90. doi: 10.1074/jbc.M407489200. Epub 2004 Oct 5. J Biol Chem. 2004. PMID: 15466856
-
MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells.Stem Cells. 2014 May;32(5):1337-46. doi: 10.1002/stem.1640. Stem Cells. 2014. PMID: 24446170 Free PMC article.
-
[Ex vivo expansion of human hematopoietic stem cells by passive transduction of the HOXB4 homeoprotein].J Soc Biol. 2006;200(3):235-41. doi: 10.1051/jbio:2006027. J Soc Biol. 2006. PMID: 17417138 Review. French.
-
Ex vivo expansion of megakaryocytic cells.Int J Hematol. 2000 Apr;71(3):203-10. Int J Hematol. 2000. PMID: 10846824 Review.
Cited by
-
Overexpression of nuclear distribution protein (hNUDC) causes pro-apoptosis and differentiation in Dami megakaryocytes.Cell Prolif. 2013 Oct;46(5):576-85. doi: 10.1111/cpr.12055. Epub 2013 Sep 7. Cell Prolif. 2013. PMID: 24010816 Free PMC article.
-
MicroRNAs 10a and 10b Regulate the Expression of Human Platelet Glycoprotein Ibα for Normal Megakaryopoiesis.Int J Mol Sci. 2016 Nov 9;17(11):1873. doi: 10.3390/ijms17111873. Int J Mol Sci. 2016. PMID: 27834869 Free PMC article.
-
Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694.J Biol Chem. 2015 Mar 6;290(10):5960-78. doi: 10.1074/jbc.M114.614891. Epub 2015 Jan 15. J Biol Chem. 2015. PMID: 25593320 Free PMC article.
-
SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells.Mol Ther. 2015 Jan;23(1):158-70. doi: 10.1038/mt.2014.196. Epub 2014 Oct 8. Mol Ther. 2015. PMID: 25292191 Free PMC article.
-
Studying the Role of HOX Genes in Thrombocyte Development.Methods Mol Biol. 2025;2889:107-119. doi: 10.1007/978-1-0716-4322-8_8. Methods Mol Biol. 2025. PMID: 39745608
References
-
- Antonchuk SGJ, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell. 2002;109:39–45. - PubMed
-
- Kyba PRM, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002;109:29–37. - PubMed
-
- Amsellem PFS, Bardinet D, Izac B, Charneau P, Romeo PH, Dubart-Kupperschmitt A, Fichelson S. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med. 2003;9:1423–7. - PubMed
-
- Krosl APJ, Beslu N, Kroon E, Humphries RK, Sauvageau G. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med. 2003;9:1428–32. - PubMed
-
- Bowles VLKM, Smith JR, Alexander MR, Pedersen RA. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells. 2006;24:1359–69. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous