Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb-Mar;12(2-3):241-54.
doi: 10.1016/0143-4160(91)90024-9.

Ca(2+)-oscillations and Ca(2+)-waves in mammalian cardiac and vascular smooth muscle cells

Affiliations

Ca(2+)-oscillations and Ca(2+)-waves in mammalian cardiac and vascular smooth muscle cells

W G Wier et al. Cell Calcium. 1991 Feb-Mar.

Abstract

In this article, we review briefly the available theories and data on [Ca2+]i-waves and [Ca2+]i-oscillations in mammalian cardiac and vascular smooth muscles. In addition to our review, we also report: (i) the existence and characterization of rapid agonist-induced [Ca2+]i-waves in cultured vascular smooth muscle cells (A7r5 cells); and (ii a new method for studying rapid [Ca2+]i-waves in mammalian cardiac ventricular cells. In mammalian cardiac muscle several types of Ca(2+)-release from sarcoplasmic reticulum (SR) are known to occur and might be involved in Ca(2+)-waves and Ca(2+)-oscillations: (a) Ca(2+)-induced release of Ca2+, of the type thought to be important in normal excitation-contraction coupling; (b) spontaneous, cyclic release of Ca2+ related to a Ca(2+)-overload of the SR; and (c) Ins(1,4,5)P3-induced Ca(2+)-release. The available data support the idea that [Ca2+]i-waves in heart propagate by a mechanism somewhat different than that involved in normal excitation-contraction coupling (a, above), perhaps involving spontaneous release of Ca2+ from an overloaded SR (b, above). In mammalian vascular smooth muscle, our data support the idea that agonist-receptor interaction (vasopressin, in this case) initiates [Ca2+]i-waves that then propagate via some form of Ca(2+)-induced release of Ca2+, perhaps in a manner similar to that proposed by Berridge and Irvine [1].

PubMed Disclaimer

LinkOut - more resources