Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;139(4):1344-54.
doi: 10.1053/j.gastro.2010.06.041. Epub 2010 Jun 20.

Loss of Lsc/p115 protein leads to neuronal hypoplasia in the esophagus and an achalasia-like phenotype in mice

Affiliations

Loss of Lsc/p115 protein leads to neuronal hypoplasia in the esophagus and an achalasia-like phenotype in mice

Eugen Zizer et al. Gastroenterology. 2010 Oct.

Abstract

Background & aims: Lsc/p115 originally was described as hematopoietic Ras homologous protein guanine exchange factor (Rho-GEF) regulating leukocyte migration, adhesion, and marginal zone B-cell homeostasis. Here we investigate the expression pattern of lsc/p115 in the gastrointestinal tract and the consequences of lsc/p115 deficiency in lsc/p115-knockout mice.

Methods: The phenotype of lsc/p115-deficient mice was analyzed in vivo with small-animal computed tomography scans and esophageal manometry. The morphology and myenteric plexus were evaluated with immunohistochemistry, morphometry, Western blot analyses, and quantitative reverse-transcription polymerase chain reaction.

Results: lsc/p115 is expressed in the gastrointestinal tract, sparing the segment of the small intestine. Immunohistochemical staining detects lsc/p115 in the muscle layer and the glial fibrillary acidic protein-positive glia in the esophagus. Esophageal manometry uncovers a severe motor dysfunction in lsc/p115-deficient mice. This achalasia-like phenotype is characterized by disturbed peristalsis, hypertension of the lower esophageal sphincter, and impaired relaxation of the lower esophageal sphincter. Lsc/p115-deficient mice develop a progressive dilatation of the esophagus and decrease of the muscle layer. The muscle cell differentiation is not altered in lsc/p115-deficient mice. However, the density of inhibitory and excitatory neurons and glia cells in the myenteric plexus and the muscle layer are reduced in morphometric analyses. This reduced number of glia cells is accompanied by reduced expression of the neurotrophic nerve growth factor.

Conclusions: lsc/p115 deficiency results in impaired neuronal innervation and in motor dysfunction recapitulating several aspects of esophageal achalasia. Reduced expression of nerve growth factor and a reduced number of glia cells most likely contribute to this phenotype.

PubMed Disclaimer

Comment in

MeSH terms

Substances

LinkOut - more resources