Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;30(1):11-21.
doi: 10.1109/TMI.2010.2055884. Epub 2010 Jul 1.

Image-based variational meshing

Affiliations

Image-based variational meshing

Orcun Goksel et al. IEEE Trans Med Imaging. 2011 Jan.

Abstract

In medical simulations involving tissue deformation, the finite element method (FEM) is a widely used technique, where the size, shape, and placement of the elements in a model are important factors that affect the interpolation and numerical errors of a solution. Conventional model generation schemes for FEM consist of a segmentation step delineating the anatomy followed by a meshing step generating elements conforming to this segmentation. In this paper, a single-step model generation technique is proposed based on optimization. Starting from an initial mesh covering the domain of interest, the mesh nodes are adjusted to minimize an objective function which penalizes intra-element intensity variations and poor element geometry for the entire mesh. Trade-offs between mesh geometry quality and intra-element variance are achieved by adjusting the relative weights of the geometric and intensity variation components of the cost function. This meshing approach enables a more accurate rendering of shapes with fewer elements and provides more accurate models for deformation simulation, especially when the image intensities represent a mechanical feature of the tissue such as the elastic modulus. The use of the proposed mesh optimization is demonstrated in 2-D and 3-D on synthetic phantoms, MR images of the brain, and CT images of the kidney. A comparison with previous meshing techniques that do not account for image intensity is also provided demonstrating the benefits of our approach.

PubMed Disclaimer

Publication types

LinkOut - more resources