Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;49(10):1975-83.
doi: 10.1093/rheumatology/keq175. Epub 2010 Jul 2.

Evaluation of anti-oxidant treatments in an in vitro model of alkaptonuric ochronosis

Affiliations

Evaluation of anti-oxidant treatments in an in vitro model of alkaptonuric ochronosis

Daniela Braconi et al. Rheumatology (Oxford). 2010 Oct.

Abstract

Objectives: Alkaptonuria (AKU) is a rare genetic disease associated with deficient homogentisate 1,2-dioxygenase activity in the liver. This leads to the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products in connective tissues, which in turn become characterized by the presence of melanin-like pigments (ochronosis). Since at present, further studies are necessary to support the use of drugs for the treatment of AKU, we investigated the effects of various anti-oxidants in counteracting melanin-like pigmentation and oxidative stress related to HGA and its metabolites.

Methods: We set up an in vitro model using human serum treated with 0.33 mM HGA and tested the anti-oxidants ascorbic acid, N-acetylcysteine, phytic acid (PHY), taurine (TAU), ferulic acid (FER) and lipoic acid (LIP) for their ability to prevent or delay the production of melanin-like pigments, as well as to reduce oxidative post-translational modifications of proteins. Monitoring of intrinsic fluorescence of HGA-induced melanin-like pigments was used to evaluate the efficacy of compounds.

Results: Our model allowed us to prove efficacy especially for PHY, TAU, LIP and FER in counteracting the production of HGA-induced melanin-like pigments and protein oxidation induced by HGA and its metabolites.

Conclusions: Our model allows the opening of new anti-oxidant therapeutic strategies to treat alkaptonuric ochronosis.

PubMed Disclaimer

Publication types

MeSH terms