Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct;77(10):837-55.
doi: 10.1002/mrd.21206.

Cell plasticity in homeostasis and regeneration

Affiliations
Review

Cell plasticity in homeostasis and regeneration

Brigitte Galliot et al. Mol Reprod Dev. 2010 Oct.

Abstract

Over the past decades, genetic analyses performed in vertebrate and invertebrate organisms deciphered numerous cellular and molecular mechanisms deployed during sexual development and identified genetic circuitries largely shared among bilaterians. In contrast, the functional analysis of the mechanisms that support regenerative processes in species randomly scattered among the animal kingdom, were limited by the lack of genetic tools. Consequently, unifying principles explaining how stress and injury can lead to the reactivation of a complete developmental program with restoration of original shape and function remained beyond reach of understanding. Recent data on cell plasticity suggest that beside the classical developmental approach, the analysis of homeostasis and asexual reproduction in adult organisms provides novel entry points to dissect the regenerative potential of a given species, a given organ or a given tissue. As a clue, both tissue homeostasis and regeneration dynamics rely on the availability of stem cells and/or on the plasticity of differentiated cells to replenish the missing structure. The freshwater Hydra polyp provides us with a unique model system to study the intricate relationships between the mechanisms that regulate the maintenance of homeostasis, even in extreme conditions (starvation and overfeeding) and the reactivation of developmental programs after bisection or during budding. Interestingly head regeneration in Hydra can follow several routes according to the level of amputation, suggesting that indeed the homeostatic background dramatically influences the route taken to bridge injury and regeneration.

PubMed Disclaimer

Publication types

LinkOut - more resources