Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug 30;90(11):1827-36.
doi: 10.1002/jsfa.4021.

Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species

Affiliations

Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species

Abdullah I Hussain et al. J Sci Food Agric. .

Abstract

Background: The aim of the present study was to appraise variation in the chemical composition, and antimicrobial and cytotoxic activities of essential oils from the leaves of four Mentha species-M. arvensis, M. piperita, M. longifolia and M. spicata-as affected by harvesting season. Disc diffusion and broth microdilution susceptibility assays were used to evaluate the antimicrobial activity of Mentha essential oils against a panel of microorganisms. The cytotoxicity of essential oils was tested on breast cancer (MCF-7) and prostate cancer (LNCaP) cell lines using the MTT assay.

Results: The essential oil contents of M. arvensis, M. piperita, M. longifolia and M. spicata were 17.0, 12.2, 10.8 and 12.0 g kg(-1) from the summer and 9.20, 10.5, 7.00 and 9.50 g kg(-1) from the winter crops, respectively. Gas chromatographic-mass spectrometric analysis revealed that mostly quantitative rather than qualitative variation was observed in the oil composition of each species. The principal chemical constituents determined in M. arvensis, M. piperita, M. longifolia and M. spicata essential oils from both seasons were menthol, menthone, piperitenone oxide and carvone, respectively. The tested essential oils and their major components exhibited notable antimicrobial activity against most of the plant and human pathogens tested. The tested essential oils also exhibited good cytotoxicity potential.

Conclusion: Of the Mentha essential oils tested, M. arvensis essential oil showed relatively better antimicrobial and cytotoxic activities. A significant variation in the content of most of the chemical components and biological activities of seasonally collected samples was documented.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources