Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;1798(10):1899-907.
doi: 10.1016/j.bbamem.2010.06.027. Epub 2010 Jul 23.

The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling

Affiliations
Free article

The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling

Veerappan Anbazhagan et al. Biochim Biophys Acta. 2010 Oct.
Free article

Abstract

The influence of lipid bilayer properties on a defined and sequence-specific transmembrane helix-helix interaction is not well characterized yet. To study the potential impact of changing bilayer properties on a sequence-specific transmembrane helix-helix interaction, we have traced the association of fluorescent-labeled glycophorin A transmembrane peptides by fluorescence spectroscopy in model membranes with varying lipid compositions. The observed changes of the glycophorin A dimerization propensities in different lipid bilayers suggest that the lipid bilayer thickness severely influences the monomer-dimer equilibrium of this transmembrane domain, and dimerization was most efficient under hydrophobic matching conditions. Moreover, cholesterol considerably promotes self-association of transmembrane helices in model membranes by affecting the lipid acyl chain ordering. In general, the order of the lipid acyl chains appears to be an important factor involved in determining the strength and stability of transmembrane helix-helix interactions. As discussed, the described influences of membrane properties on transmembrane helix-helix interactions are highly important for understanding the mechanism of transmembrane protein folding and functioning as well as for gaining a deeper insight into the regulation of signal transduction via membrane integral proteins by bilayer properties.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources